No Campus com Helder Coelho

Complicado e simples

<i>Deep Learning</i>

Para quando os agentes artificiais serão de facto capazes de pensar e planear com conceitos (representações abstratas) e em situações normais do dia-a-dia

unsplash - Jen Loong
Helder Coelho
Helder Coelho

Quando se fala em complexidade pensamos que estamos perante  muitas coisas diferentes, com grandes quantidades de relações e de interações, e, sobretudo, na necessidade de múltiplos recursos. E, porquê? Sabemos que é a diversidade de meios que permite alcançar os vários fins.

A tese do “algoritmo mestre”, de Pedro Domingos (2015), parte da ideia de que temos de combinar multitudes de singularidades se quisermos ter êxito na resolução de problemas muito complicados. Pelo contrário, tudo o que é simples pode ser atacado com meios mais modestos.

Outrora, reduzir problemas a coisas mais elementares (método cartesiano) parecia ser o caminho perfeito. No entanto, quando os grandes problemas se tornam mais difíceis de tratar, o método foi considerado incapaz. E, daí a necessidade de dispormos de mais tipos de inteligência (concreta, abstracta, convergente, divergente, criativa, analítica, sequencial, holística), de raciocínios (monótono, não monótono, temporal, espacial, hipotético, analógico), e de algoritmos. Falar agora do império de uma super inteligência artificial, para nos amedrontar, parece não ser apropriado e ajuizado. O que o homem tem necessidade, quando enfrenta o complexo, é de “agentes” com um pouco de mais inteligência (estendida, aumentada) e de ajuda (cooperação, colaboração). Combinar o natural e o artificial. Trabalhar com coletivos, e isso já acontece no sector da saúde com bons resultados.

Em gestão é costume falar-se em “pensar fora da caixa” ou combinar o pensar global com o agir local. Não é só compreender, mas sim encadear, raciocinar, julgar, refletir, explicar, reagir, antecipar e prever.

O modelo BDI (Belief-Desire-Intention), de (Bratman, 1987), para caracterizar a mente de um agente é simples demais, mas produz resultados interessantes. Epstein (2014) propôs, recentemente, o Agente Zero, juntando àquele triângulo BDI os lados afetivo e social de uma arquitetura mais agressiva para a simulação social. Contudo, nos nossos dias é preciso ainda descobrir a emulação da realidade, isto é escalar a experiência, até se tornar credível e próxima daquilo que acontece.

Peguemos no caso dos drones comerciais, aptos a navegar com autonomia graças a um GPS (também os seres humanos estão dotados de um GPS no cérebro). Embora tenham já desempenhos notáveis (por exemplo, na Guerra dos EUA no Afeganistão) não escapam a erros grosseiros de precisão da perceção da realidade: matar famílias inocentes de pertenceram aos talibãs. Estes enganos têm também ocorrido com os automóveis sem condutor, incapazes de reagirem, com rapidez, a acontecimentos imprevisíveis, de compreenderem o que se passa em redor, e de refletir sobre o que escolher e fazer em seguida. Estão já prontos a aprender (imitar) algumas capacidades dos condutores humanos, mas isso é ainda muito pouco.

O algoritmo DroNet (Loquercio et al., 2018), desenvolvido na Universidade de Zurique, interpreta a cena que observa com uma câmara de telemóvel (em vez dos habituais sensores), e permite não só reconhecer obstáculos dinâmicos e estáticos, mas também de desacelerar a velocidade do veículo, evitando o choque iminente. Resta ainda saber em que tipo de situações (só simples?) se adapta e se é possível preverem desastres.

O DroNet aprende (coleciona), graças ao Deep Learning e a redes neuronais, apoiado em milhares de exemplos de automóveis e de bicicletas (conduzidas por seres humanos) em ambientes urbanos e reais. No entanto, a dúvida continua a ser como um algoritmo se adaptará (flexibilidade) a novas (parecidas) situações (não registadas previamente), ou mesmo como descobrirá aspetos (traços, propriedades) não conhecidos, mas relevantes para as novas situações que podem encontrar. Ou seja, para quando os agentes artificiais serão de facto capazes de pensar e planear com conceitos (representações abstratas) e em situações normais do dia-a-dia.

Referências
Bratman, M. Intentions, Plans and Practical Reason, CSLI Publications, 1987.
Domingos, P. The Master Algorithm, How the quest for the ultimate learning machine will remake our world, Penguin Books, 2015.
Epstein, J. Agent_Zero: Toward Neurocognitive Foundations for Generative Social Science, Princeton University Studies in Complexity, 2014.
Loquercio, A., Maqueda, A. I., Del Blanco, C. R., e Scaramuzza, D. DroNet: Learning to Fly by Driving, IEEE Robotics and Automation Letters, Vol. 3, N.º 2, April, 2018.

Helder Coelho, professor do Departamento de Informática de Ciências ULisboa
info.ciencias@ciencias.ulisboa.pt

Aula abordou temas de paleontologia e geologia   

Selecionados para as bolsas da Gulbenkian de 2025

Apoios financeiros abrangem nove alunos de Ciências ULisboa 

revista IMPROP

A IMPROP sempre foi uma revista irreverente produzida por estudantes – e é assim que o mais recente número deste histórico título começa a ser distribuído esta quarta feira pela comunidade académica.

Prémio de empreendedorismo da ULisboa

Universidade de Lisboa distinguida durante Web Summit

Investigador distinguido pelo trabalho nas ciências da separação

Fotografia de exposição do Museu de História Natural

Exposição patente no Museu Nacional de História Natural e da Ciência 

Reitoria da Universidade de Lisboa

Mais de 170 spinouts identificadas em novo relatório

Miguel Pinto, Cristina Lopes, Luís Carriço, Cristina Máguas e Ana Sofia Reboleira.

CIÊNCIAS e a Sociedade Portuguesa de Espeleologia assinaram um protocolo de cooperação.

Ranking coloca Universidade de Lisboa na 139ª posição mundial

Placa do prémio Jack Riordan & Paul Quinton CF Science Award 2025

Investigador recebe o Jack Riordan & Paul Quinton Cystic Fibrosis Science Award 2025

Nuno Araújo

Nuno Araújo é um dos líderes do Projeto RODIN

Sala Inclusiva está em funcionamento na Biblioteca do edifício C4

Parceria envolve Departamento de Ciências Matemáticas e Sociedade Portuguesa de Oncologia

Rita Eusébio e Ana Sofia Reboleira, nos laboratórios de Ciências ULisboa

Nova espécie descoberta no Parque Natural das Serras de Aire e Candeeiros

Cristina Branquinho, professora de CIÊNCIAS

Documento redigido em Manaus vai ser apresentado na Conferência das Nações Unidas

david macdonald dia da investigação

Investigador da Universidade de Oxford foi o convidado especial do Dia da Investigação e da Inovação

Margarida Santos-Reis no dia da Investigação e Inovação

Professora de CIÊNCIAS homenageada no Dia da Investigação e da Inovação

Passeio da Ciência

Novo Passeio da Ciência dá a conhecer centros de investigação e infraestruturas científicas

Nuno Garcia dos Santos durante a sessão

O Dia da Investigação e da Inovação da Faculdade de Ciências da Universidade de Lisboa (CIÊNCIAS) arrancou na manhã desta quarta-feira com uma sala bem concorrida de professores, cientistas e

observatório newathena

Nuno Covas lidera simulações relacionadas com o observatório NewAthena  

Palestra no Grande auditório de CIÊNCIAS

Núcleo de estudantes trouxe especialistas para ciclo de palestras 

salas de estudo

Evento da aliança Unite! teve lugar na Finlândia

O clima e a meteorologia serevem de tema ao prémio do IPMA

Prémio organizado pelo IPMA destina-se a jovens investigadores

Páginas