Helder Coelho
As revistas Nature (28 de maio, 2015) e Science (17 de julho, 2015) dedicaram números especiais ao campo da Inteligência Artificial (IA), que faz 60 anos de vida em agosto deste ano. O que surpreende mais, na leitura dos artigos, são as notas soltas sobre as melhorias de desempenho obtidas nas últimas duas décadas, em particular na resolução de problemas com restrições, na tradução e compreensão de línguas, e nos jogos com informação imperfeita onde se conseguiu um enorme avanço. A recente vitória do programa AlphaGo, da Google DeepMind, contra os campeões europeu e mundial de Go, por 5-0 e 4-1, expressou os sucessos conseguidos no processamento dos dados e com recurso à aprendizagem mecânica (Deep Learning). A Google, através do seu presidente Eric Schmidt, declarou a intenção em se tornar uma empresa de IA, em vez de procura de informação.
Coloquemos agora o foco da nossa atenção na racionalidade (por exemplo, no comportamento de um agente artificial em simulação social) e também na sua conceção computacional. Existem vários modelos (e arquiteturas) de agentes, sobre as suas atitudes (crenças, preferências) ou estados mentais, que se popularizaram desde o fim dos anos 80, a saber o BDI (Belief-Desire-Intention) de Bratman (1987), apoiado na Filosofia, o PECS (Physical-Emotion-Cognitive-Social) de Urban e Schmidt (2000), apoiado na Psicologia, e o Agent_Zero (Emotion-Cognitive-Social) de Epstein (2013), apoiado nas Neurociências. Estes modelos recorrem às abstrações conceptuais, representadas por estruturas de dados (desenho do agente por camadas), e nalguns casos as crenças são codificadas como distribuições de probabilidades (os economistas não precisam de explicar como as preferências ou as capacidades dos agentes são descritas). Os modos de codificação, preocupação dos informáticos, determinaram os progressos que têm sido obtidos no desempenho alcançado com a operação da racionalidade (na Economia, os agentes são considerados como racionais, embora Herbert Simon tenha alertado para o perigo de tais modelos).
Os investigadores da aprendizagem mecânica inspiraram-se no que se passa no mundo animal com a construção da recompensa (aprendizagem por reforço), aonde um agente deriva uma política (mapeamento das sequências de perceção em ações) baseada nas compensações, as quais representam valores instantâneos associados a um estado e a uma ação. Sob o ponto de vista da engenharia, interessada na especificação da recompensa, há que assegurar a eficiência do agente e isso pode acontecer pelo treino, com uma concentração sobre os sinais da entrada e durante todo o processo de aprendizagem, para otimizar o comportamento. Isto explica o papel que as motivações intrínsecas (caso da curiosidade) do agente desempenham na flexibilidade da aprendizagem.
Ora, nos últimos 30 anos, a IA preocupou-se com afinco em duas áreas essenciais, representação do conhecimento e inferência (para a manipulação das representações), recorrendo às redes Bayesianas e aos formalismos gráficos relacionados (redes). De facto, a expressão da incerteza sobre as relações, além das proposições, tem sido o objetivo das linguagens de modelação probabilística, e é por isso que as vias estatísticas têm dominado a aprendizagem mecânica e o processamento das línguas naturais, para desconforto de alguns puristas, como o linguista Noam Chomsky. A gestão das preferências tornou-se numa facilidade ao dispor do projetista e do programador, e o planeamento (relacionado com as ações ao longo do tempo) é capaz de transformar um problema como se de otimização se tratasse, sujeito a restrições, a objetivos múltiplos e a efeitos probabilísticos das ações.
Os agentes artificiais, hoje em dia, raciocinam não só para alcançar metas ou realizar tarefas (governação baseada em objetivos), mas necessitam também de raciocinar sobre os outros agentes (incluindo qualidades) que encontram, adotando uma visão do mundo como se tratasse de um jogo, isto é respondendo aos comportamentos dos outros e esperando que as suas escolhas (decisões) conjuntas estejam em equilíbrio, tal como o pensamento económico defende. Assim, a nível mundial (veja-se o que se tem passado anualmente no Congresso Mundial AAMAS) a Teoria dos Jogos tem vindo a ganhar um peso maior quando enfrentamos situações com múltiplos agentes. Por exemplo, no jogo poker, onde a informação é imperfeita e a incerteza e a complexidade imperam, descobrem-se novos desafios para as técnicas de IA: os jogadores conhecem elementos da história do jogo, ao longo do tempo, enfrentam a incerteza, e atualizam as suas crenças sobre o que se vai passando (as cartas nas mãos dos jogadores e as crenças dos outros). A computação de um equilíbrio de Nash, aproximado do jogo completo, exige um enorme esforço e novos métodos de procura equilibrada (algoritmos de aprendizagem), o que se traduz depois em novas potencialidades de resolver problemas reais (os jogos de segurança no acesso a aeroportos, na proteção dos aviões estacionados na placa do aeroporto, e no controle das costas marítimas de um país). A investigação do grupo TEAM CORE, do professor Milind Tambe da Universidade da California do Sul (EUA), aparece como um dos exemplos dos trabalhos científicos em IA com resultados muito bons.