Seminário

Advancing Monte Carlo simulation with GANs, diffusion models, and normalizing flows

Sala 6.4.29, CIÊNCIAS ULisboa (com transmissão online)

Por Renato Assunção (ESRI Inc., USA and Department of Computer Science, Universidade Federal de Minas Gerais, Brazil).

Nos últimos anos, houve um progresso notável nos métodos de simulação de Monte Carlo, impulsionado pela integração de técnicas avançadas de machine learning...

Transmissão via Teams


Abstract: Recent years have seen remarkable progress in Monte Carlo simulation methods, driven by the integration of cutting-edge machine learning techniques such as Generative Adversarial Networks (GANs), diffusion models, and normalizing flows. These innovations enable the generation of complex, high-dimensional data, from highly realistic human faces to artistic transformations, such as converting a landscape photo into a Van Gogh-style painting. These breakthroughs, which often make headlines, capture widespread interest but remain challenging to simulate using traditional Monte Carlo techniques. GANs operate by training two networks in a competitive framework, yielding impressive results in high-dimensional sampling. Diffusion models offer a compelling alternative to Monte Carlo sampling by iteratively refining samples, reversing a noise-adding process, and producing smooth transitions critical for many applications. Normalizing flows map simple, tractable distributions (e.g., Gaussians) to complex target distributions through a sequence of invertible transformations, enabling efficient density estimation and sample generation. These advancements significantly expand the scope of Monte Carlo simulations, allowing statisticians and researchers to model more complex and non-standard distributions with greater accuracy and computational efficiency. This talk will explore these transformative methods, highlighting their principles, applications, and potential to redefine simulation in modern statistics and data science.

14h00-15h00
CEAUL - Centro de Estatística e Aplicações da Universidade de Lisboa / CEMAT - Centro de Matemática Computacional e Estocástica
Computador portátil a projetar imagem de sequência biológica

Curso com candidaturas até 12 dezembro.

Workshop sobre Arqueologia Histórica, Ciências Ambientais e Trabalho em Comunidade.

Estudantes

As candidaturas decorrem até 08 de janeiro.

Titulo do prémio e pormenor da Ponte Vasco da Gama

As candidaturas decorrem até 09 de janeiro.

Representação de pessoa a interagir com tecnologia

O curso introduz o conceito de Digital Twins e a sua aplicação estratégica no contexto do serviço público, com foco na modernização digital, otimização de processos e apoio à decisão - candidaturas até 11 de janeiro.

Bola de cristal colocada no solo

Curso com candidaturas até 19 de dezembro.

Imagem exemplificativa da área da deteção remota

Este curso avançado tem como objetivo fornecer acesso e ferramentas para a aquisição e processamento de dados de deteção remota para diferentes aplicações, usando imagens multiespectrais de satélite, drone, terrestres e LiDAR, com foco na caracterização da vegetação e da paisagem, bem como das suas mudanças ao longo do tempo - candidaturas até 19 de dezembro.

Duas pessoas a interagirem num contexto de realidade virtual

O curso explora o potencial da Realidade Virtual (VR) e Aumentada (AR) como ferramentas inovadoras nos processos de onboarding e desenvolvimento de competências - candidaturas até 25 de janeiro.

Ana Rita Lopes

As candidaturas decorrem até 30 de janeiro.

Ginásio "inundado" de tecnologia

Um programa único na Europa, com o objetivo de capacitar para a integração crítica, segura e eficaz de ferramentas digitais na intervenção clínica - candidaturas até 16 de janeiro.

Imagem abstrata

Neste curso, será promovida uma abordagem multidisciplinar, apresentando as descobertas mais recentes sobre o tema e desafiando a forma tradicional de considerar as associações simbióticas como exceções e não como a regra - candidaturas até 09 de janeiro.

As inscrições são grátis para funcionários e estudantes de CIÊNCIAS e da FCiências.ID, mediante a utilização do código CIENCIASFREE. 

O workshop propõe promover a partilha de estratégias metodológicas que permitam transformar as ferramentas de inteligência artificial em apoios qualificados ao trabalho docente, assegurando que complementam, e nunca substituem, a intervenção profissional, o rigor pedagógico e a intencionalidade do professor.

Pessoas a analisarem dados

Candidaturas até 13 de fevereiro.

Um curso prático, limitado a um pequeno número de participantes, destinado a quem procura formação básica em teoria e estatística macroecológica e deseja familiarizar-se com algumas das potenciais utilizações de vários métodos avançado - candidaturas até 13 de fevereiro.