A Brief History of Geometry
Por Jean-Pierre Bourguignon (IHES, France and Academia das Ciências de Lisboa).
Por Jean-Pierre Bourguignon (IHES, France and Academia das Ciências de Lisboa).
Por Pedro Marques (Universidade de Évora).
Por Susana Ferreira (Instituto Politécnico de Leiria).
Sessão de apresentação do Portal GI2 e do Laboratório GI2, duas iniciativas do projeto Geometria Intuitiva e Interativa, financiado pela Fundação Calouste Gulbenkian no âmbito dos "Projetos Inovadores no Domínio Educativo".
Após uma breve apresentação do Portal GI2 na sala 6.2.33, seguir-se-á uma visita ao Laboratório GI2, sediado na sala 6.2.40.
Por Emílio Franco (Universidade do Porto).
Abstract: Using the Dirac–Higgs bundle, we consider a new class of space-filling (BBB)-branes on moduli spaces of Higgs bundles, given by a generalized Nahm transform of a stable Higgs bundle. We then use the Fourier–Mukai–Nahm transform to describe its dual brane, which is checked to be a (BAA)-brane supported on a complex Lagrangian multisection of the Hitchin fibration.
Por Gonçalo Oliveira (Duke University - E.U.A.).
Por Javier Alcaide (Mestrado em Matemática da FCUL).
Björn Gohla
GFM, Universidade de Lisboa
Abstract: Lattice models arise in physics as discrete approximations of quantum field theories (QFT). Topological quantum field theories (TQFT) on the other hand by definition are QFTs, that can be defined on smooth or topological space-times, as opposed to the usual pseudo-Riemannian space-times required by QFTs. Interesting TQFTs can be defined as lattice models, giving exactly solvable models in 2 dimensions for example.
Sean Lawton
George Mason University - U.S.A.
Abstract: In this talk we will first discuss a general procedure for compactifying G-character varieties of discrete groups, where G is a semisimple algebraic group of adjoint type over an algebraically closed field. We will then discuss various properties of this compactification in special cases of the discrete group. This work is in collaboration with Dan Ramras and Indranil Biswas.
Leonor Godinho
Dep. Matemática - Instituto Superior Técnico