Opinião

Sobre o novo Programa de Matemática do Ensino Básico

Livros e giz
iStockphoto.com

O Ministério da Educação do XIX Governo Constitucional elegeu como prioridade a revisão do Currículo Nacional com o objetivo de elevar os padrões de desempenho dos alunos em Portugal (Despacho n.º 5306/2012 de criação das Metas Curriculares). Essa revisão, no que à Matemática diz respeito, culminou com a homologação de um novo programa de Matemática no passado dia 17 de junho, por Despacho n.º 9888-A/2013 onde se lê “o novo Programa de Matemática para o Ensino Básico, que agora se homologa, concluído que se encontra o período de discussão pública, agregou as Metas Curriculares, complementando-as, com o objetivo de se constituir como documento único perfeitamente coerente”.

Na base do estabelecimento das Metas Curriculares de Matemática e posterior revogação do Programa de 2007 (na fase final do seu período de implementação), cremos estarem algumas das críticas presentes no parecer de 3 de outubro de 2007 da responsabilidade da Sociedade Portuguesa de Matemática (SPM). Passamos a citar:

  1. A subalternização dos conteúdos curriculares, que aparecem integrados em «competências» vagas, utópicas e impossíveis de verificar.
  2. O desprezo pela memorização e aquisição de rotinas e a sua fantasiosa subordinação à compreensão completa e ao uso contextualizado.
  3. A consideração das rotinas e automatismos como obstáculos ao desenvolvimento do raciocínio e compreensão dos conceitos.
  4. A consideração dogmática do ensino em contexto como processo único de aprendizagem, esquecendo a necessidade de treinos específicos, nomeadamente de algoritmos e regras algébricas.
  5. No novo documento continua ainda a sobrevalorizar-se a calculadora nunca apontando as suas limitações.
  6. Recomenda-se também que se pratique o cálculo mental. Mas ao ler melhor o documento percebe-se que o que é entendido como cálculo mental são apenas procedimentos ad hoc que podem constituir recursos, mas que não se devem sobrepor aos algoritmos.

É bem sabido que um mesmo documento pode originar leituras diferentes, mas no caso do Programa de 2007 pode ser difícil compreender as críticas enunciadas. Por exemplo:

1. O programa de 2007 não refere competências mas sim capacidades, como acontece, aliás, no programa e metas de 2013.
2. O programa refere:

  • Em Indicações metodológicas 1.º ciclo:

É importante ainda que os alunos aprendam a operar recorrendo a um amplo conhecimento de estratégias de cálculo e ao conhecimento que têm dos números e que aprendam a realizar algoritmos.

  • Em Tópicos e objetivos específicos 1.º e 2.º anos:

Compreender e memorizar factos básicos da adição e relacioná-los com os da subtração.
Compreender, construir e memorizar as tabuadas da multiplicação.

  • Em Objetivos gerais do ensino da Matemática (p. 4):

Efetuar procedimentos e algoritmos de cálculo rotineiros;

  • A propósito de tarefas e recursos:

As tarefas propostas aos alunos devem incluir, de forma equilibrada, a resolução de problemas e a exploração e investigação de situações numéricas, bem como exercícios destinados a consolidar aspetos rotineiros da aprendizagem dos números e operações (por exemplo, o cálculo do valor de expressões numéricas). (p. 48)

3. Não se encontra no programa qualquer passagem que indique as rotinas e automatismos como obstáculos ao desenvolvimento do raciocínio e compreensão dos conceitos.
4. Refere:
É importante que essas situações* sejam apresentadas de modo realista e sem artificialidade, permitindo capitalizar o conhecimento prévio dos alunos. (…) mas os alunos precisam de saber trabalhar igualmente em contextos puramente matemáticos, sejam de índole numérica, geométrica ou algébrica
* as situações referidas no excerto são situações a propor aos alunos pelo professor
5. Refere:
Ao longo de todos os ciclos, os alunos devem usar calculadoras e computadores na realização de cálculos complexos, na representação de informação e na representação de objetos geométricos.
A calculadora e o computador não devem ser usados para a realização de cálculos imediatos ou em substituição de cálculo mental. (p. 9 e 10)
6. Existem várias referências, sobretudo no 1.º ciclo. Por exemplo:

  • Uma boa capacidade de cálculo mental permite aos alunos seguirem as suas próprias abordagens, usarem as suas próprias referências numéricas e adotarem o seu próprio grau de simplificação de cálculos, permite-lhes também desenvolver a sua capacidade de estimação e usá-la na análise da razoabilidade dos resultados dos problemas. (p. 10)
  • Devem ser também praticadas na aula rotinas de cálculo mental, podendo este ser apoiado por registos escritos. (p. 14)
  • Utilizar estratégias de cálculo mental e escrito para as quatro operações usando as suas propriedades (em Objetivos específicos e Notas, p. 18)

É também interessante olhar as críticas do documento da SPM, ao Programa 2007, à luz dos currículos do Reino Unido e de Singapura que são, aliás, referenciados na bibliografia do documento Metas Curriculares. Sobre esses mesmos pontos lê-se nos programas do Reino Unido (Mathematics Programmes of study for Key Stages 1-2, Department for education, UK, February 2013) e de Singapura (Mathematics Syllabus Primary, Ministry of Education Singapore, 2007 e Primary Mathematics Teaching and Learning Syllabus, Ministry of Education Singapore, 2012):

1. While there is a need to constantly review what students learn, the changes in content will not be the key lever. In fact, little has been changed in the content as this has stabilised over the years. Instead, more focus has now been given to skills and competencies that will make a better 21st century learner - the process of learning becomes more important than just what is to be taught and remembered. (Sing. 2012)

2. The learning of mathematics should focus on understanding, not just recall of facts or reproduction of procedures. Understanding is necessary for deep learning and mastery. Only with understanding can students be able to reason mathematically and apply mathematics to solve a range of problems.(Sing. 2012)

4. Teaching should connect learning to the real world, harness ICT tools and emphasise 21st century competencies. (…) Students should have an understanding and appreciation of these applications and how mathematics is used to model and solve problems in real-world contexts. (Sing. 2012)

5. Calculators and other technology tools are tools for learning and doing mathematics. The introduction of calculators at P5 and P6 reflects a shift to give more focus to processes such as problem solving skills.  (Sing. 2007)
Calculators should not be used as a substitute for good written and mental arithmetic. They should therefore only be introduced near the end of Key Stage 2 to support pupils’ conceptual understanding and exploration of more complex number problems, if written and mental arithmetic are secure. (UK)

No Despacho nº 5165-A/2013 de 16 de abril são apresentadas razões para a revogação do Programa de 2007, entre as quais salientamos as seguintes, relativas à implementação das Metas Curriculares:

- Durante o corrente ano letivo, ao serem aplicadas com carácter não vinculativo, a sua utilização teve resultados muito positivos nas escolas e nas turmas em que as mesmas foram usadas, conforme consultas efetuadas junto das escolas;
- Foi estabelecido no início do processo de elaboração das Metas que estas se fariam com base no atual Programa, que o complementariam, sistematizando e ordenando os objetivos do ensino, e que não deveriam entrar em conflito com aquele, embora a sua adoção pudesse implicar adaptações pontuais e vir a recomendar ajustes no Programa;
- Apesar de as referidas indicações metodológicas poderem ser dispensadas e apesar de os conteúdos das Metas e do Programa não serem absolutamente coincidentes apenas em aspetos muito particulares, verificou-se pela experiência deste ano letivo que subsistem algumas dúvidas quanto à implementação conjunta destes dois documentos.

Ora não são do domínio público quaisquer dados sobre a experiência da implementação das Metas durante o ano letivo 2012/2013 e não são conhecidos os “resultados muito positivos” referidos no Despacho. Durante os debates sobre a proposta do agora homologado Programa, organizados pela SPM no IST e pelo CMUP na Universidade do Porto, os autores do Programa agora homologado foram questionados sobre os resultados a que o Despacho se refere e sobre as escolas onde a experiência foi levada a cabo. A resposta menos evasiva referiu a implementação das Metas em duas escolas de Lisboa, uma pública e outra privada mas não revelou os resultados.

Na sequência da revogação do programa de 2007 o jornal Público escreve em 17 de abril:
“O presidente da SPM, Miguel Abreu, afirmou nesta quarta-feira que só compreende ‘a revogação do programa de Matemática para o ensino básico e a sua substituição por outro, nesta altura, se tiver sido detetada alguma impossibilidade legal de aplicar as metas curriculares no próximo ano letivo’ .‘Terá sido esse o problema? Não sei. Não vejo o que é que pode justificar uma medida que vai causar nas escolas uma agitação completamente desnecessária’, disse Miguel Abreu. Na sua perspetiva, ‘a conciliação do programa com as metas obrigava apenas a alguns ajustes, nada’, sublinhou, ‘que não pudesse ser feito pelos professores em sala de aula’”.

O Programa de 2007 tem certamente deficiências, mas a homologação do novo programa não foi de todo oportuna. Por um lado, foi prematuro proceder a alterações sem conhecimento e reflexão sobre os resultados a que o Programa de 2007 conduziria, por outro lado, é incompreensível a imposição desta mudança ignorando os custos a ela inerentes (elaboração de programa — onde se incluem as Metas Curriculares e os cadernos de apoio— formação de formadores, formação de professores) numa fase de contenção dos gastos públicos. Além disso, em consequência da homologação das Metas Curriculares, procedeu-se à alteração significativa de manuais o que, contrariamente ao que a lei determinava, impediu as famílias de aproveitarem os manuais do ano letivo anterior, impediu os professores de proceder à seleção de manuais para este ano letivo (devido a compromissos assumidos com as editoras dos manuais adotados no ano letivo anterior) e possivelmente impediu os professores de conhecer os manuais alterados com a antecedência desejável.

Existem também aspetos de outra natureza que merecem atenção ou suscitam preocupação. O novo programa, sobretudo no que às Metas Curriculares diz respeito, revela, por parte dos seus autores, um distanciamento e um desconhecimento do que é a realidade numa escola básica e do que são as crianças e adolescentes dos nossos dias.

O que funcionou há quarenta ou trinta anos deixou de ser eficaz. As exigências e as solicitações do mundo de hoje são diferentes, os ambientes escolares são mais heterogéneos e a organização familiar dos alunos é mais complicada. Não é mais possível esperar que os alunos se adaptem incondicionalmente ao professor; o professor deve também adaptar-se à realidade das suas turmas e reinventar-se sempre que essa realidade o exija. Um programa alicerçado na preocupação do axiomatizar (como acontece no domínio da Geometria), que valoriza o “formalismo pelo formalismo”, que rejeita a possibilidade de compreensão de conceitos e procedimentos (com maior incidência no 1.º ciclo), que despreza ou desconhece o cálculo mental e capacidades a desenvolver a ele inerentes, bem como a realização de estimativas, entre outros aspetos, dificulta a tarefa do professor, para além de se distanciar das orientações de programas recentes de outros países como o Reino Unido, Singapura e Estados Unidos.

A propósito, leia-se o seguinte excerto do recente documento Primary Mathematics Teaching and Learning Syllabus, Ministry of Education Singapore, 2012:
The learning of mathematics must take into cognisance the new generation of learners, the innovations in pedagogies as well as the affordances of technologies.
Principles of Teaching
Principle 1
Teaching is for learning; learning is for understanding; understanding is for reasoning and applying and, ultimately problem solving.
Principle 2
Teaching should build on students ‘knowledge; take cognisance of students’ interests and experiences; and engage them in active and reflective learning.
Principle 3
Teaching should connect learning to the real world, harness ICT tools and emphasise 21st century competencies.

Aos interessados deixamos os links de pareceres elaborados por matemáticos sobre o programa de Matemática agora homologado.

O primeiro sobre o programa, elaborado pelos autores deste texto, os restantes sobre as Metas Curriculares, respetivamente da responsabilidade/autoria de Jaime Carvalho e Silva (Universidade de Coimbra) e da responsabilidade da Sociedade Portuguesa de Estatística, elaborado por Maria Eugénia Graça Martins, Luísa Canto Castro Loura (FCUL) e Maria Manuela Neves (Instituto Superior de Agronomia).

http://webpages.fc.ul.pt/~mjgouveia/DPPPMEB.pdf

http://www.spestatistica.pt/images/CEE%20SPE%20OTD%20METAS%20CURRICULARES8.pdf

http://www.apm.pt/files/205600__Metas_Curriculares-parecerJCS_5192c70042133.pdf

Carlos Albuquerque, Ana Cristina Barroso, Maria João Gouveia, Suzana Nápoles, Luís Sequeira e Maria Manuel Torres, docentes do Departamento de Matemática da FCUL

Orador: Ivana Ljubic (University of Vienna)

 

Título: The Recoverable Robust Facility Location Problem

 

O desafio está lançado: experimentar, na primeira pessoa, a realidade da investigação científica na Faculdade de Ciências da Universidade de Lisboa e conhecer por dentro o campus universitário e os seus laboratórios, de 21 a 24 de julho.

Denís Graña e José Sebio desenvolveram este projeto no âmbito da disciplina de Aplicações na Web do mestrado em Engenharia Informática de Ciências.

O Centro de Investigação Operacional realizará no dia 19 de junho, quinta-feira, às 14H30, na sala 6.4.31, um Seminário intitulado The Recoverable Robust Facility Location Prob

Mapa

A FCT e a FAPESP pretendem lançar em 2014 um concurso para projetos de investigação, com equipas conjuntas, em todos os domínios científicos.

Observatório Astronómico

O Edifício das Matemáticas, que faz parte do complexo arquitetónico do Observatório Astronómico, foi também recentemente modelado em 3D por um grupo de alunos da Faculdade de Ciências da ULisboa.

Mais uma visita a uma escola, na região oeste, para uma sessão com duas palestras...

Aberta aos sábados, até às 17h00, entre 7 e 28 de junho.

Ambiente subaquático

O passeio a bordo do galeão ocorre durante a manhã. Os participantes além de recolherem o lixo subaquático também poderão fotografar a biodiversidade. Da parte da tarde estão previstas outras ações como a identificação de sons de animais marinhos, a observação de plâncton à lupa e a recolha de amostras para análises genéticas.

HoliBraille

Diogo Marques e Tiago Guerreiro, investigadores de Ciências, assinam juntamente com outros cinco investigadores o artigo "Augmenting Braille Input through Multitouch Feedback".

2ª fase de candidaturas para o Mestrado em Matemática para Professores: de 18 de Agosto a 3 de Setembro. Este ano iniciar-se-á o ensino em regime de b-learning neste mestrado.

Prémio Jovem Investigador da Sociedade Europeia de Aterosclerose

Ana Catarina Alves, doutoranda do centro BioFIG, distingue-se com o trabalho "Novel functional APOB mutations outside LDL-binding region causing familial hypercholesterolaemia".

Durante o terceiro debate foram apresentados os resultados de um estudo de opinião com incidência em temáticas como a educação para o mar, a Economia verde, a eficiência energética ou a reindustrialização.

Parabéns à Alexandra Symeonides, Fábio Silva, Filipe Gomes, João Dias, João Enes, Pedro Pinto e Sílvia Reis, alunos ou ex-alunos do mestrado em Matemática do Departamento de Matemática de Ciências, pela obtenção duma bolsa de doutoramento LisMath.

A sessão de abertura do Fórum do Mar ocorre no dia 28 de maio, pelas 9h30, com a presença do Senhor Secretário de Estado do Mar.

Logo do evento

O Departamento de Informática da FCUL (DI-FCUL) organiza este ano a segunda edição do&nb

Luís Correia, atual presidente do Departamento de Informática e diretor do LabMAg, foi entrevistado no contexto do projeto europeu ASSISIbf&nbs

No âmbito da unidade curricular Estatística Ciência e Sociedade, realiza-se no dia 29 de maio, pelas 12h, na sala 6.2.50 um Seminário da autoria dos alunos Carlos Botelho, Soraia Graça e Vasco Guerra, intitulado 

O Centro de Investigação Operacional realizará no dia 5 de Junho, pelas 15 horas, na sala 6.4.31, um Seminário intitulado : "Column Generation in Routing: Classical CVRP and Transport

António Amorim

As emissões das florestas podem ter um papel fundamental nos momentos iniciais da formação das nuvens.

Abstract: Routing problems are naturally formulated by enumerating possible routes and combining them to derive an improved solution. This combination is done by solving a set partitioning problem that assures the set of chosen routes to visit all routing customers exactly once.

Conferência no dia 30 de Maio, pelas 11h30, sala 6.2.53, Edifício C6, FCUL, Campo Grande, Lisboa, no âmbito do “Dia do Geológo”

 

O Professor Pedro Ferraz de Abreu, Professor Catedrático Convidado da Faculdade de Ciências da Universidade de Lisboa e Investigador do Massachusetts Institute of Technology (MIT) está a visitar vários estados do Brasil como Brasília,

Rita e Mariana, alunas do pré-escolar daquele colégio, deram conta de alguns pormenores do que aprenderam nos telhados do edifício C4: “vimos muitos painéis solares. Nunca tínhamos visto! O senhor disse que o Sol batia neles, depois aqueciam e produziam eletricidade”.

SESSÕES DE APRESENTAÇÃO & ESCLARECIMENTO

 

- 23 Maio 2014 (6ªF), 17:00-18:30h, sala 2.2.14

o    Biologia da Conservação (BC)

Páginas