Opinião

A Terra num futuro distante

Última Revisão —
Quatro cenários diferentes para a formação do próximo supercontinente

Quatro cenários diferentes para a formação do próximo supercontinente

Imagem cedida pelos autores
Ana Pires
Ana Pires
Fonte IDL Ciências ULisboa

Como será o clima da Terra quando o próximo supercontinente se formar? Uma nova publicação tem em conta o impacto da tectónica de placas, da rotação do planeta e da radiação solar no clima futuro da Terra.

Como será o clima da Terra quando o próximo supercontinente se formar? Uma nova publicação tem em conta o impacto da tectónica de placas, da rotação do planeta e da radiação solar no clima futuro da Terra. O sistema climático terrestre é fortemente influenciado pela presença e distribuição dos continentes, bem como pela circulação oceânica que os rodeia.

Por exemplo, a superfície terrestre aquece mais rapidamente do que a superfície oceânica; os climas moderados das latitudes médias dependem do transporte de calor proveniente dos trópicos pelo oceano; os sistemas atmosféricos comportam-se de maneira diferente consoante estiverem sobre terra, sobre água ou transitando entre uma e outra, se estiverem a altitude zero ou perante regiões montanhosas. Por outro lado, a disposição dos continentes e dos oceanos é determinada pela movimentação das placas tectónicas que compõem a camada mais superficial da Terra sólida. Estas placas deslizam entre si, afastam-se, colidem, e estas deslocações, que acontecem ao ritmo de alguns centímetros por ano, são responsáveis pela formação das cadeias montanhosas, das zonas de subducção e das falhas que dão origem a sismos. A escalas de tempo muito longas, o movimento destas placas leva a que os continentes se juntem ciclicamente em grandes supercontinentes, como foi o caso da Pangeia que existiu há 200 milhões de anos. O próximo supercontinente dever-se-á formar daqui a cerca de 200-250 milhões de anos. Como é que este será? E qual será o seu clima?

Este novo trabalho publicado na edição de agosto da revista  Geochemistry, Geophysics, Geosystems, da American Geophysical Union, resulta da colaboração entre Michael Way (NASA-GISS, EUA) com os investigadores do IDL Ciências ULisboa Hannah Davies e João C. Duarte e com Mattias Green da School of Ocean Sciences da Universidade de Bangor (Reino Unido).

Os investigadores exploram duas configurações possíveis de um supercontinente futuro, onde a diferença crucial reside na sua localização – um está centrado junto ao equador e o outro junto a um dos polos. Estes supercontinentes foram submetidos ainda a variações na topografia terrestre, intensidade da radiação solar e velocidade de rotação da Terra. Um estudo desta natureza contribui não só para a compreensão do papel das diferentes componentes do sistema Terra no seu clima, mas também nos dá uma ideia de como poderão ser os outros planetas como a Terra fora do nosso sistema solar – os exoplanetas – e até ajudar a perceber se estes poderão ser habitáveis.

Supercontinentes no futuro e simulações climáticas

Se, no passado, o supercontinente Pangeia resultou da união da Eurásia e África com as Américas, ainda não é certo como os continentes se irão juntar no futuro (ou, visto de outra forma, quais os oceanos que irão fechar). As duas configurações usadas neste estudo são a “Aurica” – resultante do fecho dos oceanos Atlântico e Pacífico, e com os continentes a juntarem-se junto ao equador – e a “Amásia” – um supercontinente resultante do encontro de praticamente todos os continentes junto ao Pólo Norte.

Com o auxílio de modelos numéricos e supercomputadores foi possível criar estas duas “Terras” e submetê-las a diferentes conjuntos de condições para explorar como será o seu clima.

Vídeos sobre os ciclos sazonais das temperaturas, simulações de dez anos (intervalo de tempo em meses), referentes aos climas da Terra num futuro distante em "Aurica" e  "Amásia", disponíveis na área multimédia do site da Faculdade e canal Youtube.

A ferramenta mais importante no estudo do clima, quer seja passado, presente ou futuro, é o modelo numérico de circulação geral, isto é, uma representação computacional do sistema climático que, nas suas versões mais sofisticadas, inclui todas as suas componentes (atmosfera, oceânico, biosfera, geosfera). Os investigadores podem atribuir valores ou comportamentos a essas diferentes componentes consoante o propósito do seu estudo.

Tendo em conta os objetivos deste estudo, foram desenhados três cenários de relevo terrestre para as simulações climáticas. O primeiro tem a função de controlo, isto é, apresenta as menores variações possíveis: o supercontinente tem uma topografia que varia pouco acima do nível do mar (0-200 m). A segunda simulação apresenta uma topografia média semelhante à da Terra dos dias de hoje (0-4000 m), mas sem montanhas (“relevo médio atual”). A terceira mantém a topografia na sua generalidade igual à da de controlo, mas intercala-a com máximos de relevo de 2000-7000 m (“relevo acentuado”). Estes três cenários foram simulados para cada supercontinente, resultando em seis corridas de modelo. Foram ainda elaboradas corridas de teste com os continentes tais como os conhecemos.

Resultados

O aumento obtido para a temperatura média global entre uma Terra de hoje e uma Terra com um supercontinente situa-se entre os 3 e os 7°C, efeito este que, no seu mínimo, é atribuível exclusivamente à distribuição das massas continentais. O Aurica apresenta o aumento de temperatura mais drástico. Por estar centrado a latitudes baixas, a distribuição de calor por via da circulação do oceano global continua a realizar-se entre o equador e os pólos, e a ausência de massas continentais junto aos pólos resulta numa diminuição drástica da fração de cobertura de gelo/neve (<1% nas simulações de controlo e de relevo médio atual, e de 1,5% na simulação “relevo acentuado”, contra ~9% na simulação “Terra atual”). Por outro lado, entre variações de relevo a temperatura média global praticamente não varia, apontando para a irrelevância da topografia nesta configuração de supercontinente.

Já no caso do Amásia, o incremento de massas continentais em latitudes elevadas a norte implica barreiras à circulação oceânica junto ao Pólo e consequentemente menor transporte de calor pelo oceano, um dos mecanismos através dos quais o gelo do Hemisfério Norte é derretido durante o Verão. Ou seja, há um incremento na fração de gelo/neve entre 5 e 10% (podendo, portanto, ultrapassar a cobertura da “Terra atual”). Isto leva a que a temperatura média do Amásia seja sempre inferior à temperatura média do Aurica (entre 0,3 e 3,5°C). Ao contrário do Aurica, o Amásia é sensível a alterações na topografia: a temperatura média à superfície na simulação “relevo médio atual” é inferior à da simulação de controlo (-2,6°C) e a fração de cobertura de gelo/neve aumenta para o dobro. Isto é compreensível visto que a taxa de precipitação que ocorre sob a forma de neve aumenta com a altitude, sobretudo nas latitudes elevadas. Por outro lado, a simulação de “relevo acentuado” não apresenta diferenças significativas relativamente à simulação de controlo, sugerindo que o relevo médio tem maior influência na temperatura global e na cobertura de gelo e neve do que a existência de montanhas.

Finalmente, os autores não encontram evidências de a duração do dia ter um impacto significativo na dinâmica do clima. Já o aumento do fluxo radiativo solar por unidade de área, sem outras variantes, implica em traços gerais um aumento da temperatura média à superfície de 5°C e uma diminuição da fração de água congelada em 3%.

Estudos desta natureza, para além de permitirem aprofundar a nossa compreensão acerca do sistema Terra a escalas de tempo longas, permitem ainda compreender como planetas semelhantes à Terra podem evoluir, o que fornece informação crucial acerca de potenciais exoplanetas e em que condições estes podem albergar vida. Este trabalho realça ainda a relevância da distribuição de massas continentais, da topografia média e da intensidade da radiação solar no sistema climático.

Exemplo de uma simulação referente ao supercontinente Amásia
Exemplo de uma simulação referente ao supercontinente Amásia
Imagem cedida pelos autores

Ana Pires, comunicadora de ciência do IDL Ciências ULisboa
info.ciencias@ciencias.ulisboa.pt

A procrastinação é uma das grandes causas do insucesso académico e fonte de muito sofrimento e conflito interno. Para conquistar a procrastinação podemos começar por nos questionarmos: porque é que ando, constantemente a adiar.

Um estudo publicado na revista científica Science, do qual Vítor Sousa, investigador do Centro de Ecologia, Evolução e Alterações Ambientais (cE3c), é coautor, demonstra que há mais de 34 000 anos os grupos de seres humanos caçadores-recoletores desenvolveram redes sociais complexas para escolher parceiros e evitar riscos da endogamia.

No âmbito dos projetos “MoTHER – Mobilidade e Transição em Habitações Especiais e Reativas” e “HIPE – Habitações Interativas para Pessoas Excecionais”, Manuel J. Fonseca, Luís Carriço e Tiago Guerreiro, professores do Departamento de Informática e investigadores do Laboratório de Sistemas Informáticos de Grande Escala, irão desenvolver soluções tecnológicas para melhorar a qualidade de vida, nomeadamente a autonomização de pessoas com lesões vertebro medulares, alojadas em residências da Santa Casa da Misericórdia de Lisboa.

A Associação Ciências Solidária foi constituída por escritura pública em 6 de abril de 2016, por iniciativa da Direção da Faculdade de Ciências, com o apoio de vários membros da comunidade. É um projeto de proximidade, baseado na responsabilidade social, com o fim de contribuir para a construção de uma comunidade mais justa e solidária.

A Semana da Ciência e Tecnologia celebra-se no país entre 20 e 26 de novembro. O ponto alto acontece a 24 com o Dia Nacional da Cultura Cientifica. Ciências junta-se à efeméride com dezenas de iniciativas.

A experiência destes anos mostra que as avaliações feitas pelos estudantes são um bom indicador da qualidade do ensino e que são úteis para a sua melhoria.

“Esta oportunidade deu-me uma valiosa experiência profissional e cada dia foi uma nova lição aprendida. Contudo, considero que o que se destacou foram as pessoas incríveis que aqui conheci”, declara Jake Smith, estudante de Francês, Espanhol e Português na Universidade de Nottingham, no Reino Unido e estagiário durante cerca de dois meses na Área de Mobilidade e Apoio ao Aluno da Faculdade de Ciências.

Na próxima sessão do 60 Minutos de Ciência convidamos o astrónomo Rui Agostinho para nos ajudar a responder à pergunta: Afinal… o que é a Estrela de Natal? A resposta será desvendada em mais uma sessão 60 Minutos de Ciência no MUHNAC-ULisboa, no dia 16 de novembro.

João Luís Andrade e Silva, professor catedrático aposentado da Faculdade de Ciências da Universidade de Lisboa, faleceu esta sexta-feira, dia 10 de novembro, aos 89 anos. A Faculdade lamenta o triste acontecimento, apresentando as condolências aos seus familiares, amigos e colegas.

O que fazem e o que pensam alguns membros da comunidade de Ciências? O Dictum et factum de novembro é com Emília Real, assistente técnica do Departamento Física de Ciências.

Nos últimos anos, a UNESCO financiou o projeto internacional - "Complex Systems Digital Campus (UniTwin)" - recorrendo a uma plataforma de e-Meeting, e esse exercício mostrou o caminho certo (alternativo aos massive open online courses ou MOOC) para esta nova experiência pedagógica da informática na educação. Quer isto dizer que a tecnologia, quando bem explorada, pode ser mesmo benéfica.

Em junho deste ano Alice Nunes terminou o programa doutoral em Biologia e Ecologia das Alterações Globais. Esta quinta-feira, durante o 16.º Encontro Nacional de Ecologia, a decorrer até amanhã no Salão Nobre da Reitoria da ULisboa, apresenta esse trabalho – “Plant functional trait response to climate in Mediterranean drylands: contribution to restoration and combat of desertification”, classificado em segundo lugar nesta primeira edição do Prémio da SPECO.

O prémio Nobel da Química foi atribuído em 2017, em partes iguais, a três investigadores, Jacques Dubochet (Universidade de Lausana, Suiça), Joachim Frank (Universidade de Columbia, Nova Iorque, EUA) e Richard Henderson (Laboratório MRC de Biologia Molecular, Cambridge, UK) pelo desenvolvimento da microscopia crioelectrónica que permite a resolução da estrutura de biomoléculas em solução com alta resolução.

Em 2017 a “Medalha Dr. Janusz Pawliszyn” foi atribuída a José Manuel Florêncio Nogueira, professor do Departamento de Química e Bioquímica, coordenador do grupo de Ciência e Tecnologia de Separação do Centro de Química e Bioquímica de Ciências e representante português na European Society for Separation Science.

Em 2017 o Centro Interuniversitário de História das Ciências e da Tecnologia celebra dez anos. Para comemorar a efeméride, a unidade de I&D realiza no próximo dia 8 de novembro, a partir das 18h00, no anfiteatro da FCiências.ID, sito no edifício C1, piso 3, a primeira distinguished lecture com Jürgen Renn, prestigiado historiador das ciências e diretor do Max Planck Institute for the History of Science.

A representação do campus da Faculdade de Ciências da Universidade de Lisboa em 3D utilizando tecnologias inovadoras fornece dados de apoio à gestão e utilização de recursos.

“Nos meus projetos lido diariamente com a Biologia, a que aprendi na faculdade e ao longo da minha vida, e com o desenho que me acompanha como forma de olhar, entender e comunicar”, declara o ilustrador científico Pedro Salgado, antigo aluno de Ciências.

.

Cerca de 39 alunos do BioSys participaram no segundo encontro de estudantes deste programa doutoral. O evento ocorreu em Beja este mês. Também em outubro terminam as candidaturas a 11 bolsas de doutoramento da próxima edição do BioSys.

Uma vez mais Ciências participou na Maratona Interuniversitária de Programação (MIUP), este ano organizada pela Universidade do Minho. A equipa de Ciências - Caracóis Hipocondríacos -, composta pelos alunos Nuno Burnay, Robin Vassantlal e Guilherme Espada, ficou em 3.º lugar, ao resolver quatro dos nove problemas da competição.

Imagina que tens um jarro vazio e um conjunto de pedras grandes, seixos, gravilha e areia. Agora, imagina que para encher o jarro, vais colocando primeiro a areia e a gravilha e só no fim, as pedras maiores... O que achas que acontece? Será que vai caber tudo e de que forma?... E se colocássemos as pedras grandes primeiro?

As alterações climáticas podem mudar a natureza do impacto do lagostim-vermelho-da-Louisiana (Procambarus clarkii) nos ecossistemas.

Recentemente, dois estudos sobre como pensamos, um do Instituto Max Planck (para a História da Ciência, Alemanha) e outro da Escola de Medicina de Harvard (EUA), de maio de 2017 (revista NeuroImage, de Elinor Amit e Evelina Fedorenko), clarificaram as diferenças que nós temos quando refletimos sobre alguma matéria, fazemos coisas, ou emulamos a realidade.

Ciências participa na KIC EIT Health que visa promover o empreendedorismo para o desenvolvimento de uma vida saudável e de um envelhecimento ativo. Os alunos podem inscrever-se na unidade curricular que lhes permite participar no projeto, sendo que uma parte é feita na Dinamarca.

A experiência ATLAS acontece há 25 anos e a data será celebrada com palestras, bem como com uma homenagem à responsável pela participação portuguesa na experiência, a cientista Amélia Maio.

O que fazem e o que pensam alguns membros da comunidade de Ciências? O Dictum et factum de outubro é com Francisco Oliveira, assistente técnico do Núcleo de Manutenção do Gabinete de Obras, Manutenção e Espaços da Área de Serviços Técnicos de Ciências.

Páginas