Seminário

A Two-Stage Approach For Bayesian Joint Models: Reducing Complexity While Maintaining Accuracy

Sala 6.4.30, Ciências ULisboa

Por Danilo Alvares (University of Cambridge, UK).

Several joint models for longitudinal and survival data have been proposed in recent years. In particular, many authors have preferred to employ the Bayesian approach to model more complex structures, make dynamic predictions, or use model averaging. However, Markov chain Monte Carlo methods are computationally very demanding and may suffer convergence problems, especially for complex models with random effects, which is the case for most joint models. These issues can be overcome by estimating the parameters of each submodel separately, leading to a natural reduction in the complexity of the joint modeling, but often producing biased estimates. Hence, we propose a novel two-stage approach that uses the estimations from the longitudinal submodel to specify an informative prior distribution for the random effects when estimating them within the survival submodel. In addition, as a bias correction mechanism, we incorporate the longitudinal likelihood function in the second stage, where its fixed effects are set according to the estimation using only the longitudinal submodel. Based on simulation studies and real applications, we empirically compare our proposal with joint specification and standard two-stage approaches considering different types of longitudinal responses (continuous, count, and binary) that share information with a Weibull proportional hazard model. The results show that our estimator is more accurate than its two-stage competitor and as good as jointly estimating all parameters. Moreover, the novel two-stage approach significantly reduces the computational time compared to the joint specification.

14h30
CEAUL - Centro de Estatística e Aplicações da Universidade de Lisboa / CEMAT - Centro de Matemática Computacional e Estocástica
Computador portátil a projetar imagem de sequência biológica

Curso com candidaturas até 12 dezembro.

Estudantes

As candidaturas decorrem até 08 de janeiro.

Representação de pessoa a interagir com tecnologia

O curso introduz o conceito de Digital Twins e a sua aplicação estratégica no contexto do serviço público, com foco na modernização digital, otimização de processos e apoio à decisão - candidaturas até 11 de janeiro.

Bola de cristal colocada no solo

Curso com candidaturas até 19 de dezembro.

Imagem exemplificativa da área da deteção remota

Este curso avançado tem como objetivo fornecer acesso e ferramentas para a aquisição e processamento de dados de deteção remota para diferentes aplicações, usando imagens multiespectrais de satélite, drone, terrestres e LiDAR, com foco na caracterização da vegetação e da paisagem, bem como das suas mudanças ao longo do tempo - candidaturas até 19 de dezembro.

Duas pessoas a interagirem num contexto de realidade virtual

O curso explora o potencial da Realidade Virtual (VR) e Aumentada (AR) como ferramentas inovadoras nos processos de onboarding e desenvolvimento de competências - candidaturas até 25 de janeiro.

Ginásio "inundado" de tecnologia

Um programa único na Europa, com o objetivo de capacitar para a integração crítica, segura e eficaz de ferramentas digitais na intervenção clínica - candidaturas até 16 de janeiro.

Imagem abstrata

Neste curso, será promovida uma abordagem multidisciplinar, apresentando as descobertas mais recentes sobre o tema e desafiando a forma tradicional de considerar as associações simbióticas como exceções e não como a regra - candidaturas até 09 de janeiro.

As inscrições são grátis para funcionários e estudantes de CIÊNCIAS e da FCiências.ID, mediante a utilização do código CIENCIASFREE. 

O workshop propõe promover a partilha de estratégias metodológicas que permitam transformar as ferramentas de inteligência artificial em apoios qualificados ao trabalho docente, assegurando que complementam, e nunca substituem, a intervenção profissional, o rigor pedagógico e a intencionalidade do professor.

Pessoas a analisarem dados

Candidaturas até 13 de fevereiro.

Um curso prático, limitado a um pequeno número de participantes, destinado a quem procura formação básica em teoria e estatística macroecológica e deseja familiarizar-se com algumas das potenciais utilizações de vários métodos avançado - candidaturas até 13 de fevereiro.