Local well-posedness for the nonlocal derivative nonlinear Schrödinger equation in Besov spaces
Por Vanessa Barros (University of Porto/Federal University of Bahia-Brazil).
Por Vanessa Barros (University of Porto/Federal University of Bahia-Brazil).
Por Lucio Boccardo (Sapienza Università di Roma).
Por Denis Bonheure (Université Libre de Bruxelles).
Por Bernardo San Martin (Universidad Católica del Norte).
Por Joana Nunes da Costa (Universidade de Coimbra).
Abstract: We investigate Nijenhuis deformations of Lie-infinity algebras, a notion that unifies several Nijenhuis deformations, namely those of Lie algebras, Lie algebroids, Poisson structures and Courant structures.
Por Paulo Oliva (Queen Mary, University of London).
Por Philipp Harms (FREIS, Univ. Freiburg).
Abstract: Fluid dynamics and shape analysis are linked by a common underlying geometric structure, namely, Sobolev-type Riemannian metrics on manifolds of mappings. I will characterize the degeneracy and non-degeneracy of the corresponding geodesic distances, establish local well-posedness of the corresponding geodesic equations, and discuss applications of these results to shape analysis and fluid dynamics.
Por Shantia Yarahmadian (State University Mississippi).
Evento de entrada livre.
Por Miroslav Haviar* (Matej Bel University, Banská Bystrica, Slovakia).
*a joint work with Andrew P.K. Craig (Johannesburg) and Maria J. Gouveia (Lisbon)
Por Juliana Fernandes (Universidade Federal do Rio de Janeiro).