Mathematical Logic Webinar

Bealer's Intensional Logic (Part II)

Transmissão através de Videoconferência

Speaker: Clarence Protin.

Abstract: Many intuitively valid arguments involving intensionality cannot be captured by first-order logic, even when extended by modal and epistemic operators.

Indeed, previous attempts at providing an adequate treatment of the phenomenon of intensionality in logic and language, such as those of Frege, Church, Russell, Carnap, Quine, Montague and others are fraught with numerous philosophical and technical difficulties and shortcomings.

We present Bealer's solution to this problem which hinges on an ontological commitment to theory of Properties, Propositions and Relations (PRP). At the most basic level we can distinguish two conceptions in the theory of PRPs. An objective one tied to modality and necessary equivalence, and a mental (intentional) one tied to concepts and the requirement of non-circularity in definitions. Building on the work of Russell, Church and Quine, Bealer proposes two distinct intensional logics T1 and T2 (presented in Hilbert form) corresponding to these two conceptions, both based on the language of first-order logic extended with an intensional abstraction operator.

In T1 necessitation can be directly defined and the axioms express S5 modal logic.

Both logics have a series of desirable features which set them apart from higher-order approaches.

Bealer constructs a non-Tarskian algebraic semantic framework, distinct from possible worlds semantics, yielding two classes of models for which T1 and T2 are both sound and complete.

Other features include being able to deal with quantifying-in, and the various substitution puzzles, being free from artificial type restrictions, having a Russellian semantics, satisfying Davidson's learnability requirement, etc.

Bealer unifies both logics to serve as a basis of a larger philosophical project in the tradition of logicism (or logical realism) as detailed in his book Quality and Concept (1982). This includes a neo-Fregean account of Arithmetic and Set Theory in which various purely logical (according to him) predication axioms (and intensional analogues of ZF, NGB, or Kelley-Morse axioms) are adjoined to T2, thereby explaining incompleteness as a property of pure logic rather than of mathematics.

Surprisingly, and rather ironically, Bealer's logic also fulfils Carnap's thesis of extensionality due precisely to its ontological commitment to the reality of PRPs.

In this series of two talks we will focus on the technical details of the proof of soundness and completeness of T1 and T2 and hint at some proof-theoretic and foundational developments.


Zoom Meeting | Meeting ID: 890 8479 3299 | Password: 409604

16h00
CMAFcIO - Centro de Matemática, Aplicações Fundamentais e Investigação Operacional

Seminário do Departamento de Engenharia Geográfica, Geofísica e Energia de Ciências ULisboa, por Pedro Pinto (Valorcar).

Seminário do Departamento de Física de Ciências ULisboa, por Vania Silverio (INESC Microsistemas e Nanotecnologias, IST).

Logótipo do projeto "Observar e Aprender"

A 17.ª edição do projeto decorre no 1.º semestre de 2022/2023.

Banner do evento

Reasoning Seminar, por Norbert Gratzl (Munich Center for Mathematical Philosophy, Ludwig-Maximilian University Munich).

Logótipo da Noite Europeia dos Investigadores 2022, sobre um fundo verde

O Museu Nacional de História Natural e da Ciência e o Jardim do Príncipe Real recebem a grande festa da ciência.

Banner do concurso (inclui fotografia apresentada numa anterior edição)

Candidaturas até 30 de setembro de 2022.

Banner do evento

No dia 6 de outubro, a ULisboa dá as boas-vindas aos seus estudantes na Cidade Universitária!

This colloquium seeks to debate ideas from the arts, humanities and sciences on the process of empathy.

Geodiversidade

Palestra no âmbito das comemorações do Dia Internacional da Geodiversidade, por Carlos Marques da Silva (DG Ciências ULisboa).

Banner do evento

Celebrando o início de um novo Ano Académico, esta sessão solene é um importante marco na vida académica da ULisboa e junta toda a sua Comunidade.

Imagem ilustrativa do curso, acompanhada de diversas informações

Um curso dirigido ao público geral e estudantes de arte ou ciência (a partir dos 16 anos), com interesse em desenho de observação, ilustração, e biologia, com ou sem experiência em desenho.

Research at the Faculty of Sciences

Participe até 12 de outubro / Submit you application until 12 October.

Banner do evento

Ciências ULisboa estará presente, de 13 a 16 de outubro, no Festival Internacional de Ciência - FIC.A

Cartaz do evento

Um evento repleto de atividades científicas, culturais e educativas, com jogos, demonstrações, palestras, entre muitas outras atividades. 

Research at the Faculty of Sciences

Join us on 26 October 2022 for the 4th edition of Ciências Research Day.