Mathematical Logic Webinar

A journey through Krivine realizability (Part II)

Transmissão através de Videoconferência

Speaker: Étienne Miquey (École Normale Supérieure de Lyon).

Abstract: Classical realizability is a theory born from Krivine's work, lying in between mathematical logic and theoretical computer science. Regarding the latter, Krivine realizability indeed defines a framework that has shown to be very conducive to unveiling the computational content of a wide range of classical proofs (going from arithmetical formulas to Cohen's forcing) while maintaining many benefits of intuitionistic realizability. On its logical side, it allows to define new models of set theory, providing for instance for a direct construction of a model in which neither the axiom of choice nor the continuum hypothesis hold. These talks will be devoted to giving a comprehensive introduction to Krivine realizability and its applications. During the first one, I intend to focus on its definition and its core properties, trying to emphasize its peculiarities with respect to intuitionistic realizability. In particular, we shall focus on the computational interpretation it gives to classical proofs. If everything goes as planned, next week we will pay attention to several applications of Krivine realizability to logic and computer science.


Zoom Meeting | ID da reunião: 890 8479 3299 - Senha de acesso: 409604

16h00
CMAFcIO - Centro de Matemática, Aplicações Fundamentais e Investigação Operacional
Saída de campo (Geologia)

O curso, com candidaturas até 20 de julho, convida os professores do Ensino Básico e Secundário a explorar a Geologia a partir das rochas que afloram nas imediações da sua escola.

Gotas de água

O curso visa capacitar os formandos para a aplicação dos índices de qualidade ecológica utilizados na avaliação da qualidade ambiental em sistemas de transição, no âmbito da Diretiva Quadro da Água (DQA) - candidaturas até 31 de agosto.

The conference aims to bring together key experts in the Medical Microwave Imaging (MMWI) field and will include invited talks, presentations and posters of peer-reviewed abstracts and conference papers, and workshops in satellite areas of research that are of interest to MMWI research.

Páginas