Aula aberta

Scientific Computing meets AI

Simulations, GraphNets and Physics-informed Neural Networks

Sala 6.2.53, Ciências ULisboa

Aula aberta no âmbito da Unidade Curricular de Aprendizagem Profunda, por Hugo Penedones (Inductiva).

Fundamental Sciences and Engineering have been using numerical simulation methods for decades, accelerating the discovery of knowledge and the development of new technologies. At the same time, the AI and ML communities were busy developing methods that replicate human capabilities of perception, pattern recognition and reasoning. In recent years, we are witnessing a confluence of the fields: Machine Learning is being used, in many different ways, to expand the boundaries of what Scientific Computing can do. In this talk we will give an overview of current trends and explain what Graph Neural Networks and Physics-Informed Neural Networks are.

Bio: Hugo Penedones has a degree in Informatics and Computing Engineering from the Univ. of Porto (PT) and is a Machine Learning research engineer who has worked in computer vision, search, bioinformatics and reinforcement learning, at places such as the Idiap Research Institute and EPFL (both in Switzerland), Microsoft and Google DeepMind (London, UK). He has a particular interest in the applications of Deep Learning to fundamental sciences and engineering and he is the co-founder and CTO at Inductiva Research Labs.

16h30
Departamento de Informática | Ciências ULisboa
Computador portátil a projetar imagem de sequência biológica

Curso com candidaturas até 12 dezembro.

Estudantes

As candidaturas decorrem até 08 de janeiro.

Titulo do prémio e pormenor da Ponte Vasco da Gama

As candidaturas decorrem até 09 de janeiro.

Representação de pessoa a interagir com tecnologia

O curso introduz o conceito de Digital Twins e a sua aplicação estratégica no contexto do serviço público, com foco na modernização digital, otimização de processos e apoio à decisão - candidaturas até 11 de janeiro.

Bola de cristal colocada no solo

Curso com candidaturas até 19 de dezembro.

Imagem exemplificativa da área da deteção remota

Este curso avançado tem como objetivo fornecer acesso e ferramentas para a aquisição e processamento de dados de deteção remota para diferentes aplicações, usando imagens multiespectrais de satélite, drone, terrestres e LiDAR, com foco na caracterização da vegetação e da paisagem, bem como das suas mudanças ao longo do tempo - candidaturas até 19 de dezembro.

Duas pessoas a interagirem num contexto de realidade virtual

O curso explora o potencial da Realidade Virtual (VR) e Aumentada (AR) como ferramentas inovadoras nos processos de onboarding e desenvolvimento de competências - candidaturas até 25 de janeiro.

Ana Rita Lopes

As candidaturas decorrem até 30 de janeiro.

Ginásio "inundado" de tecnologia

Um programa único na Europa, com o objetivo de capacitar para a integração crítica, segura e eficaz de ferramentas digitais na intervenção clínica - candidaturas até 16 de janeiro.

Imagem abstrata

Neste curso, será promovida uma abordagem multidisciplinar, apresentando as descobertas mais recentes sobre o tema e desafiando a forma tradicional de considerar as associações simbióticas como exceções e não como a regra - candidaturas até 09 de janeiro.

As inscrições são grátis para funcionários e estudantes de CIÊNCIAS e da FCiências.ID, mediante a utilização do código CIENCIASFREE. 

O workshop propõe promover a partilha de estratégias metodológicas que permitam transformar as ferramentas de inteligência artificial em apoios qualificados ao trabalho docente, assegurando que complementam, e nunca substituem, a intervenção profissional, o rigor pedagógico e a intencionalidade do professor.

Pessoas a analisarem dados

Candidaturas até 13 de fevereiro.

Um curso prático, limitado a um pequeno número de participantes, destinado a quem procura formação básica em teoria e estatística macroecológica e deseja familiarizar-se com algumas das potenciais utilizações de vários métodos avançado - candidaturas até 13 de fevereiro.