PhD in Informatics Seminar

Recommender systems for scientific items: a Sequential Enrichment (SeEn) approach

Transmissão através de Videoconferência

Por Márcia Barros.

Databases for scientific entities, such as chemical compounds, diseases and astronomical objects, are growing in size and complexity, reaching billions of items per database. Researchers need new and innovative tools for helping them to choose relevant items. In this work, we propose the use of Recommender Systems (RS) approaches coupled with scientific literature processing and deep learning to address this challenge.
In previous work, we developed a methodology called LIBRETTI - LIterature Based RecommEndaTion of scienTific Items, whose goal is the creation of <user, item, rating> datasets, related with scientific fields. These datasets are created based on the major resource of knowledge that Science has: scientific literature. The first case studies conducted with LIBRETTI were in the fields of Astronomy and Chemistry, having as items open clusters of stars and chemical compounds, respectively. More recently, LIBRETTI methodology was applied to phenotypes, diseases, and gene terms, particularly related to the COVID-19 disease. With these datasets available, we developed a hybrid recommender model suitable for implicit feedback datasets and focused on retrieving a ranked list according to the relevance of the items, for recommending chemical compounds.
However, we know that science is mutable along the time, and relevant items in the past may not be relevant for a user anymore. Thus, we are now working on the recommendation of scientific items taking in account the time when each preference was published. Instead of <user,item,rating>, we are considering the sequence of scientific entities a user had interest along a time period and trying to predict the best next entity for this user.
For this end we are working in a sequential enrichment method, called SeEN, which consists of introducing in the sequence of each user the n most similar items to the one’s the user already saw. This enriched sequence is then considered as the input for state-of-the-art collaborative-filtering sequence-aware recommendation algorithms, such as BERT4Rec, improving the results when compared with the original sequence.

More information: https://moodle.ciencias.ulisboa.pt/course/view.php?id=2964#section-6


Transmissão em direto via Zoom.

12h00

A mostly practical course, offering an overview on different community ecology and macroecological methods and software.

O evento, promovido pela Rede Campus Sustentável, conta com a participação de Carla Silva (Ciências ULisboa).

Evento de promoção da investigação na área da Estatística junto dos alunos de Licenciatura e de 1.º ano de Mestrado.

Neste encontro, iremos distinguir Active de Passive Learning e conhecer formas de aplicar este método em aulas teóricas, no ensino da Engenharia.

Logótipo da conferência, sobre um fundo branco

THE meeting place for Mobility Management practitioners and experts all over Europe.

Cristina Branquinho (Ciências ULisboa) participa nesta iniciativa com a apresentação "Restauro Ecológico em zonas semiáridas: assegurar a resiliência dos ecossistemas no futuro".

Neste encontro pedagógico iremos clarificar o papel dos ECTS (European Credit Transfer System) na planificação da carga de esforço dos alunos e na consequente atribuição de tarefas e preparação das aulas.

Imagem ilustrattva do programa, acompanhada do logótipo da Comissão Europeia

Um novo programa Erasmus+, no qual Portugal pretende reforçar a sua participação.

Logótipo do ciclo de webinars, sobre um fundo branco

At AppEEL, we aim to advance the study of evolution from an inter- and transdisciplinary approach and to identify how biological evolutionary theories can be applied to the epistemological, sociocultural and linguistic domains.

Título e imagem ilustrativa do evento (rua de cidade)

Webinar da redeMOV, uma das Redes Temáticas Interdisciplinares da ULisboa.

Título e imagem ilustrativa do evento

Webinars da redeSAÚDE, uma das Redes Temáticas Interdisciplinares da ULisboa.

Logótipo do evento

O congresso tem como tema "Velhos desafios, novas ameaças: comunicar a incerteza e combater a desinformação".

Geometry Webinar, por François Petit (Univ. Paris).

An overview of the different ways to measure biodiversity, and provides tips for the stratification of primary biodiversity data and the construction of variables that describe its various facets.

Logótipo do Encontro Ciência 2021

O tema do evento, “A Ciência que faz o Amanhã e transforma a Economia”, lança o mote para os principais temas, desafios e oportunidades da ciência em 2021 que se faz em Portugal e na Europa.

Colóquio de Matemática, por José Agapito Ruiz (Investigador no Centro de Análise Funcional, Estruturas Lineares e Aplicações da Universidade de Lisboa).

This course aims at enabling the participants to use different methods to measure the impacts of pollutants on ecosystems.

Título e data do evento

An overview of recent developments and applications of the algebraic and analytic theory of D-modules.

Desenho de campo e atividades agrícolas

Se tem um projeto inovador, candidate-se até 16 de julho.

How to predict the three-dimensional structure of nucleic acid and proteins from their sequence and use the acquired knowledge to improve or create new methodologies in molecular biology research and diagnostics?

Logótipo da Unite!

Summer School no âmbito da Rede UNITE! (University Network for Innovation, Technology and Engineering), de que faz parte a ULisboa.