PhD in Informatics Seminar

Dynamic Ensemble of Content-based Image Retrieval Systems using Online Learning with Expert Advice

Transmissão através de Videoconferência

Por Soraia Alarcão.

Content-Based Image Retrieval (CBIR) systems are useful to store and efficiently retrieve similar images from large collections. The main challenge in CBIR systems is to choose features that are sufficiently discriminative to represent the images under comparison while keeping them compact to ensure that the system is timely and computationally efficient. Since human perception of image similarity is subjective, semantic and task-dependent, unveiling the perfect combination of discriminative features is highly domain-specific and dependent on the type of image.
The most common approach is to combine multiple descriptors using an early fusion approach, where all descriptors are assumed to have the same importance, but they may not yield the same results for different types of images. An alternative is to use weights to early-fuse the descriptors using genetic algorithms or weighted functions. With both approaches, the process of designing a new CBIR for new datasets or domains involves a huge experimentation overhead, leading to multiple fine-tuned CBIR systems.
To overcome this experimentation effort, we propose a metaCBIR solution, a novel application of online learning with expert advice to create an ensemble of CBIR systems that allows us to dynamically converge to the best combination of systems, by taking advantage of user’s feedback. The resulting ensemble will be less dataset and domain dependent, while being able to take advantage of the experiments already performed to create the individual CBIR systems. Our solution is designed to be model-agnostic, modular, and scalable. Each CBIR in the ensemble returns its set of most similar images, that will be further combined in a dynamic fashion using weights to produce the final set of images similar to the given query image. The weight of each CBIR is updated based on the quality of its results, assessed by one or more human evaluators.
We conducted experiments on 13 benchmark datasets from the Biomedical, Real, and Sketch domains. metaCBIR was able to select the best CBIR sets across domains quickly (usually, less than 25 queries need to receive human feedback).

More information: https://moodle.ciencias.ulisboa.pt/course/view.php?id=2964#section-7


Transmissão em direto via Zoom.

12h00
Computador portátil a projetar imagem de sequência biológica

Curso com candidaturas até 12 dezembro.

Estudantes

As candidaturas decorrem até 08 de janeiro.

Representação de pessoa a interagir com tecnologia

O curso introduz o conceito de Digital Twins e a sua aplicação estratégica no contexto do serviço público, com foco na modernização digital, otimização de processos e apoio à decisão - candidaturas até 11 de janeiro.

Bola de cristal colocada no solo

Curso com candidaturas até 19 de dezembro.

Imagem exemplificativa da área da deteção remota

Este curso avançado tem como objetivo fornecer acesso e ferramentas para a aquisição e processamento de dados de deteção remota para diferentes aplicações, usando imagens multiespectrais de satélite, drone, terrestres e LiDAR, com foco na caracterização da vegetação e da paisagem, bem como das suas mudanças ao longo do tempo - candidaturas até 19 de dezembro.

Duas pessoas a interagirem num contexto de realidade virtual

O curso explora o potencial da Realidade Virtual (VR) e Aumentada (AR) como ferramentas inovadoras nos processos de onboarding e desenvolvimento de competências - candidaturas até 25 de janeiro.

Ginásio "inundado" de tecnologia

Um programa único na Europa, com o objetivo de capacitar para a integração crítica, segura e eficaz de ferramentas digitais na intervenção clínica - candidaturas até 16 de janeiro.

Imagem abstrata

Neste curso, será promovida uma abordagem multidisciplinar, apresentando as descobertas mais recentes sobre o tema e desafiando a forma tradicional de considerar as associações simbióticas como exceções e não como a regra - candidaturas até 09 de janeiro.

As inscrições são grátis para funcionários e estudantes de CIÊNCIAS e da FCiências.ID, mediante a utilização do código CIENCIASFREE. 

O workshop propõe promover a partilha de estratégias metodológicas que permitam transformar as ferramentas de inteligência artificial em apoios qualificados ao trabalho docente, assegurando que complementam, e nunca substituem, a intervenção profissional, o rigor pedagógico e a intencionalidade do professor.

Pessoas a analisarem dados

Candidaturas até 13 de fevereiro.

Um curso prático, limitado a um pequeno número de participantes, destinado a quem procura formação básica em teoria e estatística macroecológica e deseja familiarizar-se com algumas das potenciais utilizações de vários métodos avançado - candidaturas até 13 de fevereiro.