Seminário

Machine learning and Inverse design of soft materials

Transmissão através de Videoconferência

Por Marjolein Dijkstra (Utrecht University, The Netherlands).

Predicting the emergent properties of a material from a microscopic description is a scientific challenge. Machine learning and reverse-engineering have opened new paradigms in the understanding and design of materials. However, the soft-matter field has lagged far behind in embracing this approach for materials design. The main difficulty stems from the importance of entropy, the ubiquity of multi-scale and many-body interactions, and the prevalence of non-equilibrium and active matter systems. The abundance of exotic soft-matter phases with (partial) orientation and positional order like liquid crystals, quasicrystals, plastic crystals, along with the omnipresent thermal noise, makes the classification of these states of matter using ML tools highly non-trivial. In this talk, I will address questions like: Can we use machine learning to autonomously identify local structures [1], detect phase transitions, classify phases and find the corresponding order parameters [2] in soft-matter systems, can we identify the kinetic pathways for phase transformations [3], and can we use machine learning to coarse-grain our models? Finally, I will show how one can use machine learning to reverse-engineer the particle interactions to stabilize nature’s impossible phase of matter, namely quasicrystals?

[1] Unsupervised learning for local structure detection in colloidal systems E. Boattini, M. Dijkstra, and L. Filion, J. Chem. Physi.151, 154901 (2019).
[2] Classifying crystals of rounded tetrahedra and determining their order parameters using dimensionality reduction R. van Damme, G.M. Coli, R. van Roij, and M. Dijkstra, ACS Nano 14, 15144-15153 (2020).
[3] An artificial neural network reveals the nucleation mechanism of a binary colloidal AB13 crystal G.M.Coli and M. Dijkstra,  ACS Nano 15 (3), 4335 (2021).


Zoom:

Topic: CFTC weekly seminar

Time: May 13, 2021 10:00 AM Lisbon

Join from PC, Mac, Linux, iOS or Android

Or iPhone one-tap: 211202618,82690933410# or 308804188,82690933410#

Or Telephone:
Dial: +351 211 202 618 (Portugal Toll) or +351 308 804 188 (Portugal Toll)
Meeting ID: 826 9093 3410
International numbers available

Or a H.323/SIP room system:
H.323: 162.255.37.11 (US West) or 162.255.36.11 (US East)
Meeting ID: 826 9093 3410

SIP: 82690933410@zoomcrc.com

10h00
CFTC - Centro de Física Teórica e Computacional

A 10.ª edição do Ser Cientista realiza-se entre 21 e 25 de julho - vem investigar connosco!

Logótipo do evento, sobre fotografia dos Açores

An international symposium that convenes researchers specializing in various disciplines focused on the terrestrial and marine flora and vegetation of the Macaronesian region (Azores, Madeira, Selvagens, Canary Islands, and Cabo Verde).

Composição de imagens relativas à área das ciências forenses

O curso visa dotar os formandos, com formação universitária nas mais diversas áreas do saber, com os conhecimento necessários à integração de equipas profissionais multidisciplinares nas áreas Médico-Legais e Forenses, em Laboratórios ou Serviços Médico-Legais e Forenses.

Cientista a trabalhar com tubos de ensaio

Este curso forma profissionais para atividade na área das Análises Clínicas ou Patologia Clínica. Irão adquirir os conhecimentos essenciais à integração de equipas profissionais multidisciplinares na área das Análises Clínicas/Patologia Clínica, em laboratórios privados, públicos, hospitalares ou do Estado.

Gotas de água

O curso visa capacitar os formandos para a aplicação dos índices de qualidade ecológica utilizados na avaliação da qualidade ambiental em sistemas de transição, no âmbito da Diretiva Quadro da Água (DQA).

The conference aims to bring together key experts in the Medical Microwave Imaging (MMWI) field and will include invited talks, presentations and posters of peer-reviewed abstracts and conference papers, and workshops in satellite areas of research that are of interest to MMWI research.

Páginas