Seminário de Geometria

Quotients in Algebraic Geometry, Quiver Representations and Character Varieties

Sala 6.2.33, FCUL, Lisboa

Por Carlos Florentino (Universidade de Lisboa, CMAFcIO).

Abstract: Generalizing the classical theory of algebraic invariants, David Mumford introduced Geometric Invariant Theory in order to endow natural quotients and moduli spaces with algebro-geometric structure. It turned out that quotients in algebraic geometry are intimately related to quotients in symplectic geometry, through the famous Kempf-Ness theorem.

In this seminar, we consider this relationship and study the corresponding quotients in terms of their geometry, topology and singularities, for some classes of examples: moduli spaces of vector bundles over Riemann surfaces, moduli spaces of quiver representations, and character varieties. When these moduli spaces are algebraic varieties defined over the integers (e.g, the cases of quivers and of character varieties) one can additionally consider their arithmetic structure, which happens to be connected with their topology. We end with some new results (and conjectures and open problems) on GLn-character varieties of free and of free abelian groups, which is joint work with A. Nozad, J. Silva and A. Zamora.

13h30
CMAFcIO - Centro de Matemática, Aplicações Fundamentais e Investigação Operacional
Saída de campo (Geologia)

O curso, com candidaturas até 20 de julho, convida os professores do Ensino Básico e Secundário a explorar a Geologia a partir das rochas que afloram nas imediações da sua escola.

Gotas de água

O curso visa capacitar os formandos para a aplicação dos índices de qualidade ecológica utilizados na avaliação da qualidade ambiental em sistemas de transição, no âmbito da Diretiva Quadro da Água (DQA) - candidaturas até 31 de agosto.

The conference aims to bring together key experts in the Medical Microwave Imaging (MMWI) field and will include invited talks, presentations and posters of peer-reviewed abstracts and conference papers, and workshops in satellite areas of research that are of interest to MMWI research.

Páginas