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Abstract

In this paper we consider a phase-in/phase-out hub location problem. In partic-
ular, we assume that a transportation system is currently operating which can be
changed in the future. A planning horizon partitioned into several consecutive time
period is considered. Changes in the network structure can occur in the hubs and in
the hub edges. More specifically, existing elements can be removed and new elements
can be established. The problem consists in deciding, which network structure should
be operating in each period of the planning horizon and how the flow should be routed
through the operating structure in order to minimize the total cost. In each period, a
budget is considered for making changes in the network structure. For this problem,
a mixed-integer linear programming problem is proposed. Due to the complexity of
the problem, a local search based heuristic is also developed. The results of a series
of extensive computational tests are reported.
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1 Introduction

The design of hub networks is a problem of great relevance in the fields of transportation

and telecommunications. The typical structure of these networks includes a set of nodes

- called hubs - that consolidate the flow, and a set of edges - called hub edges -, which

connect the hubs. The non-hub nodes are assigned to one or more hubs so that all the

flow originated at the nodes is routed via at least one hub. Often, no direct shipments are

allowed between non-hub nodes. This type of structure can be very attractive because it

often allows important savings in the routing costs due to economies of scale that result

from flow consolidation at the hubs as well as from flow routing through hub edges. For

instance, the use of hub edges leads to gains in the performance of the system by the

possibility of making use of larger vehicles.

In a hub location problem (HLP) the goal is to select the nodes that should become

hubs and also to decide how to allocate the non-hub nodes to the hubs so that the total

cost for building and operating the network is minimized (see, for instance, Campbell et al.

[11]). Two possibilities are often considered for allocating the non-hub nodes to the hubs:

single or multiple allocation. In the former, each non-hub node is allocated to exactly one

hub; in the latter, this is not the case. Depending on the existence of capacities, a HLP

can be classified as capacitated or uncapacitated.

Since the seminal paper by O’Kelly [35] much research has been devoted to hub location

problems. In particular, many different hub location problems have been addressed in the

literature. O’Kelly [34] proposed the first mathematical programming formulation for a

hub location problem in a discrete setting, namely for the single-allocation p-hub median

problem. In such problem, the number of hubs to be installed is specified in advance.

This problem and variants of it have been studied by many authors (e.g. Campbell [9],

Skorin-Kapov et al. [37], Ernst and Krishnamoorthy [22, 23]).

An alternative to p-hub location problems is to leave free the number of hubs to install.

In most of the situations, a fixed setup cost for the hubs is considered. Capacitated

and uncapacitated versions of these variants have been addressed by many authors such

as Campbell [9], Abdinnour-Helm [1], Abdinnour-Helm and Venkataramanan [2], Correia

et al. [20], Ernst and Krishnamoorthy [24], Ebery et al. [21], Mayer and Wagner [31],

Boland et al. [7], Labbé et al. [30], Topcuoglu et al. [38], Chen [14], and Contreras et al.

[16].
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Other hub location problems include the one studied by Yaman and Carello [40] in

which modular link capacities are considered and the problem studied by Correia et al.

[19], who introduce capacity decisions in a single-allocation hub location problem.

In many hub location problems addressed by the existing literature, the following as-

sumptions are considered:

1. The hub level network is a complete graph.

2. There is a discount factor associated with the use of hub edges, which reflects

economies of scale.

3. Direct connections between non-hub nodes are not allowed.

4. Costs are proportional to the distances i.e, the triangle inequality holds.

5. All nodes are candidates to become hubs.

Note that assumptions 1, 3 and 4 together imply that all flow is routed via exactly 1 or

2 hubs. The reader can refer to Nickel et al. [33] for a deeper discussion on these aspects.

As mentioned by Alumur and Kara [4], the previous assumptions hold in many practical

applications such as in computer networks, postal-delivery, less-than-truck loading and

supply chain management. Nevertheless, in other cases, some of the above conditions are

too restrictive. For instance, 1) has been relaxed in several contexts such as urban public

transport networks (Nickel et al. [33]), freight transportation (Alumur and Kara [5, 6]) and

telecommunications (e.g. Contreras et al. [17, 18]). Campbell et al. [12, 13] and Yaman

[39] also address problems with incomplete hub networks.

In practice, one may have to relax other of the above conditions. One example regards

the potential nodes to become hubs. In real-life problems it often happens that not all

locations have the necessary conditions (e.g. space requirements or accessibility) to become

a hub.

One feature that cannot be ignored in many problems regards the existence of a system

already operating - even if rudimentary. Examples can be found in freight transportation,

liner shipping and city railway networks. Accordingly, the plan to develop should take

this fact into account by considering the possibility of removing some existing hubs or hub

edges and establishing new ones.
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The establishment of new structures as well as the removal of existing ones are often

medium or long-term projects involving time-consuming activities (e.g. construction) and

capital investment (e.g. installation of an adequate infrastructure, equipment supply, and

employee training). For instance, building a new underground line is quite time consuming

and is often done progressively in different stages. Building a transhipment point for a

cargo company is another example. In addition to this, the task of planning a network

has often to be made in such a way that the implementation of changes in the network

structure are carried out smoothly without disrupting the network flows. Moreover, to

abate the financial burden put on the company by such projects it is often the case that

capital expenditures as well as network design decisions should be planned over several

time periods. For instance, public transportation systems are highly dependent of state or

municipal funding, which is often not available at once but in different moments in time.

In the case of a private company, large investment are often split over a set of periods

of time (e.g. years). Last but not least, the flows between origin/destination pairs and

the costs often change over time. This is the case in many (not to say all) transportation

systems.

The previous aspects suggest the use of a dynamic plan in opposition to a static one.

One possibility for achieving this consists in considering a planning horizon divided into

several time periods and then accept that changes in the network structure can be made

at the transition between consecutive time periods.

In this paper we address a multi-period hub location problem (MPHLP) considering

that a network may already be operating. Changes in the network structure are allowed

during the planning horizon. Such changes refer to the removal of existing hubs and hub

edges and the establishment of new ones. Once a hub or a hub edge is removed, it can

not be established again and conversely, once a new hub or hub edge is installed, it should

remain operating until the end of the planning horizon. We assume that the hub level

network is connected but not necessarily a clique. An exogenous budget is considered in

each period for installing and removing hubs and hub edges as well as for maintaining the

operating ones. The budget available but not used in some period can be invested and

its return used in subsequent periods. The flows between the origin destination pairs may

vary over the planning horizon and are consolidated at the hubs under a multiple allocation

pattern.

The problem consists in choosing the hub level network structure that should be op-
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erating in each period so that the total cost over the planning horizon is minimized. By

hub level network structure in each period we mean the hubs and hub edges that are oper-

ating. Several cost components are considered: a) the cost for establishing new hubs and

hub-edges (e.g. equipment construction and land acquisition); b) the cost for removing

existing hubs and hub-edges (e.g. workforce transfer); c) the cost for operating hubs and

hub-edges; d) the cost for routing the flows. A discount factor is considered for the flow

routed through the hub edges which reflect the economies of scale mentioned above.

Figure 1 illustrates a 6-node network with a design that changes over 3 time periods.

In this figure, the square nodes identify hubs. Multiple allocation is allowed (e.g. node k

in period 1). In the situation depicted in this Figure, node k becomes a hub in period 2

whereas node m, which was a hub in the beginning, becomes a non-hub node in period 3.

i

h j

k l

m

(a) Period 1
i

h j

k l

m

(b) Period 2

i

h jm

k l

(c) Period 3

Figure 1: Example of a network evolving with the time.

For the problem just described and illustrated we propose a mixed-integer linear pro-

gramming formulation. The complexity of the problem prevents it from being solved to

optimality using a general solver unless toy instances are considered. For this reason, we

propose a heuristic for obtaining feasible solutions to the problem.

The first paper addressing a hub location problem in a dynamic context is due to
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Campbell [8]. A continuous approximation model of a general freight carrier serving a

fixed region with an increasing density of demand is considered. Terminal, transportation

and relocation costs are considered. As the demand for service by a freight carrier increases,

transportation terminals are added in order to decrease the transportation costs. A myopic

strategy with limited capability for relocation is shown to be nearly optimal unless terminal

relocation costs are large.

Gelareh [25] propose the first models for multi-period hub location problems in the con-

text of public transportation systems. Several variants are considered, including ones with

a constraint on the number of facilities and in the available budget for changing the network

design. Mixed-integer linear programming formulations are proposed for both situations.

Nevertheless, only for very small instances can the problem be solved to optimality. For

this reason, a heuristic procedure is also proposed in order to obtain feasible solutions to

the problem.

More recently, Contreras et al. [15] consider a multi-period uncapacitated hub location

problem in which the location of the hubs can change over time in order to cope with a

set of flows changing over time between the origin/destination pairs. A planning horizon

is considered which is divided into several time periods. In each period, all the demand

should be routed through the network. The total cost over the planning horizon is to be

minimized and includes the costs for locating, operating and closing hubs as well as the

cost of routing the flows. A quadratic integer programming formulation is proposed. A

Lagrangean relaxation approach is proposed which is embedded in a tree search procedure

in order to obtain the optimal solution to the problem.

Despite the small number of papers addressing dynamic hub location problems, the

importance of considering models capturing the dynamic nature of some facility location

problems is clear in the literature. The reader can refer, for instance, to the works by

Albareda-Sambola et al. [3], Melo et al. [32] and the references therein.

As we mentioned above, in this paper, we also propose a heuristic approach. Due to

the complexity of many hub location problems, several authors have proposed heuristic

procedures for obtaining feasible solutions.

Simulated Annealing procedures were proposed by (Ernst and Krishnamoorthy [22, 24]),

whereas Tabu Search approaches were proposed by (Klincewicz [29], Skorin-Kapov et al.

[36]). Abdinnour-Helm and Venkataramanan [2], and Topcuoglu et al. [38] considered the

use of Genetic Algorithms. GRASP was attempted by Klincewicz [29]. We can also find
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hybrid approaches in the literature which is the case with the works by Abdinnour-Helm [1]

and Chen [14]. Some other heuristic approaches that cannot be classified in any of the above

categories regard the works by Klincewicz [28], Campbell [10], Ernst and Krishnamoorthy

[23], Ebery et al. [21] and Gelareh and Nickel [26]. For a more comprehensive review on

the problems and applications that have been addressed in the literature the reader can

refer to the review by Alumur and Kara [4] and to the book chapters by Campbell et al.

[11] and Kara and Taner [27].

The remainder of this paper is organized as follows. In section 2, a mathematical

programming formulation is proposed for the studied problem. In section 3 a heuristic

approach is proposed. The results of the computational experiments conducted are pre-

sented and analyzed in section 4. The paper ends with the conclusions drawn from the

work done.

2 Mathematical programming formulation

In this section we start by introducing the notation that will be used throughout the paper

and afterwards we propose and discuss a mixed-integer linear programming formulation.

As we mentioned in section 1, we assume that a network may already be in operation

and thus the problem is to find the best way to change it over time. We call the initial

configuration the set of hubs and hub edges that are in operation before the beginning of the

planning horizon. These are the components of the network that can be removed during the

planning horizon. Recall that according to the definition presented in the previous section,

the end points of a hub edge are operating hub nodes. Moreover, recall our assumption

stating that the network defined by the hubs and hub edges is always connected.

2.1 Notation

Sets

T = {1, ..., T} Set of time periods in the planning horizon.

N = {1, ..., n} Set of nodes.

Hc Set of hubs in the initial configuration which can be removed

during the planning horizon.
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Ho Set of non-hub nodes in the initial configuration that can be-

come hubs during the planning horizon.

H = Ho ∪Hc

Ec Set of hub-edges {k, l}, k < l, in the initial configuration

which can be removed during the planning horizon.

Eo Set of non-hub edges {k, l}, k < l, in the initial configuration

that can become hub-edges during the planning horizon.

E = Eo ∪ Ec

Costs

FOt
k Set-up cost incurred for establishing node k as a hub in the

beginning of period t, k ∈ Ho, t ∈ T .

FCt
k Cost for closing the existing hub node k at the end of period

t, k ∈ Hc, t ∈ T \ T .

FM t
k Maintenance cost for hub k in period t, k ∈ H , t ∈ T .

GOt
kl Set-up cost incurred for establishing the hub edge {k, l} in the

beginning of period t, {k, l} ∈ Eo, t ∈ T .

GCt
kl Cost for closing hub edge {k, l} at the end of period t, {k, l} ∈

Ec, t ∈ T \ T .

GM t
kl Maintenance cost for the hub edge {k, l} in period t, {k, l} ∈

E, t ∈ T .

We define:

F t
k = FOt

k +

T
∑

τ=t

FM τ
k , k ∈ Ho, t ∈ T

F t
k = FCt

k +
t
∑

τ=1

FM τ
k , k ∈ Hc, t ∈ T \ T

F T
k =

T
∑

τ=1

FM τ
k , k ∈ Hc

Gt
kl = GOt

kl +

T
∑

τ=t

GM τ
kl, {k, l} ∈ Eo, t ∈ T

Gt
kl = GCt

kl +

t
∑

τ=1

GM τ
kl, {k, l} ∈ Ec, t ∈ T \ T
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GT
kl =

T
∑

τ=1

GM τ
kl, {k, l} ∈ Ec

The costs F and G simply give the total cost that is incurred by a hub or a hub edge

(maintenance for all periods in which the hub or hub edge is operating plus set-up or

removal depending on the situation).

Other parameters

W t
ij Flow to be sent from node i to node j in period t, i, j ∈ N ,

t ∈ T .

Ct
ij Cost for sending one unit of flow through edge {i, j} in period

t, i, j ∈ N , t ∈ T .

αt Discount factor for using a connection between hubs in period

t, t ∈ T . It is assumed that 0 < αt < 1, t ∈ T .

Bt Exogenous budget available at the beginning of time period

t, t ∈ T .

ρt Unit return rate for the capital not invested in period t, t ∈ T .

ηt Available budget at the end of period t, t ∈ T .

It is assumed that the cost matrix [Ct
ij]i,j∈N is symmetric (t ∈ T ) and also that Ct

ii = 0

(i ∈ N , t ∈ T ). Regarding the flow matrix [W t
ij]i,j∈N for each t ∈ T , we assume that

W t
ii = 0, i ∈ N .

Regarding the budget available, we assume that it allows the initial configuration to be

maintained over the entire planning horizon i.e, we assume that the budget is enough to

allow the implementation of such solution.

2.2 Mixed-Integer linear programming formulation

We consider two types of decision variables: network design decision variables, which define

the hubs and hub edges operating in each period, and flow decision variables that define

how the flow is routed through the network in each period.

Network design decision variables:

For k ∈ Ho, t ∈ T :
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ytk =







1 if node k is established as a hub node at the beginning of period t

0 otherwise

For k ∈ Hc, t ∈ T \ T :

ytk =







1 if existing hub node k finishes its operation as a hub at the end of period t

0 otherwise

For k ∈ Hc:

yTk =







1 if existing hub node k operates over the entire planning horizon

0 otherwise

For {k, l} ∈ Eo, t ∈ T :

ztkl =







1 if edge {k, l} is established as a hub edge at the beginning of period t

0 otherwise

For {k, l} ∈ Ec, t ∈ T \ T :

ztkl =



















1 if the existing hub edge {k, l} finishes its operation as a hub edge at the

end of period t

0 otherwise

For {k, l} ∈ Ec:

zTkl =







1 if the existing hub edge {k, l} operates during the entire planning horizon

0 otherwise

Flow decision variables:

xt
ijkl : Fraction of the flow from i to j in period t that is routed via the hub

edge {k, l} in the direction k → l, i, j, k, l ∈ N , i 6= j, k 6= l, t ∈ T .

ut
ijk : Fraction of the flow from non-hub origin i to destination j in period t

that leaves i via hub k, i, j, k ∈ N , i 6= j, k 6= i, j, t ∈ T .
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vtijl : Fraction of the flow sent from node i to non-hub node j that arrives at

j via hub l, i, j, l ∈ N , i 6= j, l 6= i, j, t ∈ T .

stij : Fraction of the flow from node i to node j in period t that traverses the

non-hub edge {i, j} in the direction i→ j, i, j ∈ N , i 6= j, t ∈ T .

Figure 2 illustrates the flow decision variables defined above. Note that the u-variables

and v-variables are similar to the flow variables proposed by Ernst and Krishnamoorthy

[23].

i

h j

k l

m

ut
ijk

vtijm

xt
ijkl

xt
ijlm

sthk

Figure 2: Flow variables in period t ∈ T .

For the sake of readability we present a MILP formulation for MPHLP using several

categories of constraints as follows:

1. Flow collection, distribution and conservation.

2. The initial configuration should hold for the first period.

3. Consistency between operating hubs and operating hub-edges.

4. Consistency between the flow traversing the hub edges and the operating hub edges.

5. Consistency between flow traversing non-hub edges and the actual non-hub edges.

6. Consistency between flow starting in the non-hub edges and the actual non-hub edges.

7. Consistency between flow ending in the non-hub edges and the actual non-hub edges.

8. Consistency between the flow traversing the hub nodes and the actual operating hub

nodes.
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9. Budget constraints.

10. Variable fixing.

1. Flow collection, distribution and conservation

• In every period of the planning horizon, the flow from i to j (j to i) leaves (arrives

at) node i using a hub edge or a non-hub edge:

∑

l 6=i

xt
ijil +

∑

l 6=i,j

ut
ijl + stij = 1 i, j ∈ N, i < j, t ∈ T (1)

• In every time period, the flow from i to j (j to i) arrives at (leaves) j via a hub edge

or a non-hub edge:

∑

l 6=j

xt
ijlj +

∑

l 6=i,j

vtijl + stij = 1 i, j ∈ N, i < j, t ∈ T (2)

• In every period, the flow from i to j (j to i) is not lost in the hub level network:

∑

l 6=i,k

xt
ijkl + vtijk =

∑

l 6=j,k

xt
ijlk + ut

ijk i, j, k ∈ N, i < j, k 6= i, j, t ∈ T (3)

2. The initial configuration should hold for the first period

• The existing hubs must operate at least in period 1:

∑

t∈T

ytk = 1 k ∈ Hc (4)

• The existing hub-edges must operate at least in period 1:

∑

t∈T

ztkl = 1 {k, l} ∈ Ec (5)

3. Consistency between operating hubs and operating hub edges
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• In order to establish a new hub edge in some time period the corresponding extreme

nodes should be hubs operating at least in the same time periods implied by the

establishment of the hub edge. Accordingly,

ztkl ≤
t
∑

τ=1

yτk , {k, l} ∈ Eo, k ∈ Ho, l ∈ H, t ∈ T (6)

ztkl ≤ yTk , {k, l} ∈ Eo, k ∈ Hc, l ∈ H, t ∈ T (7)

ztkl ≤
t
∑

τ=1

yτl , {k, l} ∈ Eo, k ∈ H, l ∈ Ho, t ∈ T (8)

ztkl ≤ yTl , {k, l} ∈ Eo, k ∈ H, l ∈ Hc, t ∈ T (9)

• In each time period, an existing hub edge can only be operating if both end nodes

(which correspond to hubs operating in the initial configuration) have not been re-

moved so far.

ztkl ≥ ytk, {k, l} ∈ Ec, k ∈ Hc, t ∈ T \ T (10)

ztkl ≥ ytl , {k, l} ∈ Ec, l ∈ Hc, t ∈ T \ T (11)

4. Consistency between the flow traversing the hub edges and the operating

hub edges

• Flow can only traverse a potential hub edge in some time period if the edge has been

installed.

xt
ijkl + xt

ijlk ≤
t
∑

τ=1

zτkl, {k, l} ∈ Eo, i, j ∈ N, i < j, t ∈ T (12)

• Flow can only traverse an existing hub edge in some time period if the edge has not

been removed.

xt
ijkl + xt

ijlk ≤ 1−
t−1
∑

τ=1

zτkl, {k, l} ∈ Ec, i, j ∈ N, i < j, t ∈ T (13)
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5. Consistency between flow traversing non-hub edges and the actual non-hub

edges

A variable stij can only be greater than 0 if edge {i, j} is a non-hub edge in period t.

Accordingly, some consistency constraints are needed. Four cases must be distinguished:

stij ≤

∣

∣

∣

∣

∣

t
∑

τ=1

(

yτi − yτj
)

∣

∣

∣

∣

∣

, i, j ∈ Ho, i < j, t ∈ T

stij ≤ 1−

∣

∣

∣

∣

∣

t
∑

τ=1

yτi −
t−1
∑

τ=1

yτj

∣

∣

∣

∣

∣

, i ∈ Ho, j ∈ Hc, i < j, t ∈ T

stij ≤ 1−

∣

∣

∣

∣

∣

t−1
∑

τ=1

yτi −
t
∑

τ=1

yτj

∣

∣

∣

∣

∣

, i ∈ Hc, j ∈ Ho, i < j, t ∈ T

stij ≤

∣

∣

∣

∣

∣

t−1
∑

τ=1

(

yτi − yτj
)

∣

∣

∣

∣

∣

, i, j ∈ Hc, i < j, t ∈ T

The previous constraints can be easily linearized as follows by considering additional

variables δ+ij ≥ 0 and δ−ij ≥ 0.

t
∑

τ=1

(

yτi − yτj
)

= δt+ij − δt−ij , i, j ∈ Ho, i < j, t ∈ T (14)

1−
t
∑

τ=1

yτi −
t−1
∑

τ=1

yτj = δt+ij − δt−ij , i ∈ Ho, j ∈ Hc, i < j, t ∈ T (15)

1−
t−1
∑

τ=1

yτi −
t
∑

τ=1

yτj = δt+ij − δt−ij , i ∈ Hc, j ∈ Ho, i < j, t ∈ T (16)

t−1
∑

τ=1

(

yτi − yτj
)

= δt+ij − δt−ij , i, j ∈ Hc, i < j, t ∈ T (17)

stij ≤ δt+ij + δt−ij ≤ 1, i, j ∈ H, i < j, t ∈ T (18)

6. Consistency between flow starting in the non-hub edges and the actual

non-hub edges

A variable ut
ijk can only be greater than 0 if node i is not an operating hub.

ut
ijk ≤ 1−

t
∑

τ=1

yτi , i ∈ Ho, i < j, k 6= i, j, t ∈ T (19)
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ut
ijk ≤

t−1
∑

τ=1

yτi , i ∈ Hc, i < j, k 6= i, j, t ∈ T (20)

7. Consistency between flow ending in the non-hub edges and the actual non-

hub edges

A variable vtijl can only be greater than 0 if node j is not an operating hub.

vtijl ≤ 1−
t
∑

τ=1

yτj , j ∈ Ho, i < j, k 6= i, j, t ∈ T (21)

vtijl ≤
t−1
∑

τ=1

yτj , j ∈ Hc, i < j, k 6= i, j, t ∈ T (22)

8. Consistency between the flow traversing the hubs and the actual operating

hubs

Flow can only traverse a hub node if the node corresponds to an operating hub.

ut
ijk +

∑

l 6=j,k

xt
ijlk ≤

t
∑

τ=1

yτk , i, j ∈ N, i < j, k ∈ Ho, k 6= i, j, t ∈ T (23)

ut
ijk +

∑

l 6=j,k

xt
ijlk ≤ 1−

t−1
∑

τ=1

yτk , i, j ∈ N, i < j, k ∈ Hc, k 6= i, j, t ∈ T (24)

vtijl +
∑

k 6=i,l

xt
ijlk ≤

t
∑

τ=1

yτl , i, j ∈ N, i < j, l ∈ Ho, l 6= i, j, t ∈ T (25)

vtijl +
∑

k 6=i,l

xt
ijlk ≤ 1−

t−1
∑

τ=1

yτl , i, j ∈ N, i < j, l ∈ Hc, l 6= i, j, t ∈ T (26)

stij+2xt
ijij+

∑

l 6=i,j

(

xt
ijil + xt

ijlj

)

≤































∑t

τ=1

(

yτi + yτj
)

, i, j ∈ Ho, i < j, t ∈ T
∑t

τ=1 y
τ
i +

(

1−
∑t−1

τ=1 y
τ
j

)

, i ∈ Ho, j ∈ Hc, i < j, t ∈ T
(

1−
∑t−1

τ=1 y
τ
i

)

+
∑t

τ=1 y
τ
j , i ∈ Hc, : j ∈ Ho, i < j, t ∈ T

2−
(
∑t−1

τ=1 y
τ
i +

∑t−1
τ=1 y

τ
j

)

, i, j ∈ Hc, i < j, t ∈ T

(27)

9. Budget constraints
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In each time period, the amount spent with the hub level network (establishments,

removals and maintenances) cannot exceed the existing budget.

∑

k∈Ho

(

FO1
k + FM1

k

)

y1k +
∑

k∈Hc

(

FC1
ky

1
k + FM1

k

)

+

∑

{k,l}∈Eo

(

GO1
kl +GM1

kl

)

z1kl +
∑

{k,l}∈Ec

(

GC1
klz

1
kl +GM1

kl

)

+ η1 = B1 (28)

∑

k∈Ho

(

FOt
ky

t
k + FM t

k

t
∑

τ=1

yτk

)

+
∑

k∈Hc

(

FCt
ky

t
k + FM t

k

(

1−
t−1
∑

τ=1

yτk

))

+

∑

{k,l}∈Eo

(

GOt
klz

t
kl +GM t

kl

t
∑

τ=1

zτkl

)

+
∑

{k,l}∈Ec

(

GCt
klz

t
kl +GM t

kl

(

1−
t−1
∑

τ=1

zτkl

))

+ ηt

= Bt +
(

ρt−1ηt−1
)

, t = 2, . . . , T − 1 (29)

∑

k∈Ho

(

FOT
k y

T
k + FM1

k

T
∑

τ=1

yτk

)

+
∑

k∈Hc

FM1
k

(

1−
T−1
∑

τ=1

yτk

)

+

∑

{k,l}∈Eo

(

GOT
klz

T
kl +GMT

kl

T
∑

τ=1

zτkl

)

+
∑

{k,l}∈Ec

GMT
kl

(

1−
t−1
∑

τ=1

zτkl

)

+ ηT

= BT +
(

ρT−1ηT−1
)

(30)

10. Variable fixing

The meaning of the decision variables is only complete with the following constraints:

xt
ijkl = 0, i, j ∈ N, i 6= j, k, l ∈ N \H, k 6= l, t ∈ T (31)

ut
ijk = 0, i, j ∈ N, i 6= j, k ∈ N \H, k 6= i, j, t ∈ T (32)

vtijl = 0, i, j ∈ N, i 6= j, l ∈ N \H, l 6= i, j, t ∈ T (33)

stij = 0, i, j ∈ N \H, t ∈ T (34)
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Accordingly, a MILP formulation for MPHLP, which we denote by P is the following:

min
∑

t∈T

∑

i

∑

j>i

(

W t
ij +W t

ji

)

(

∑

k

∑

l 6=k

αtCt
klx

t
ijkl + Ct

ijs
t
ij +

∑

k 6=i,j

Ct
iku

t
ijk +

∑

l 6=i,j

Ct
ljv

t
ijl

)

+
∑

t∈T

∑

k∈H

F t
ky

t
k +

∑

t∈T

∑

{k,l}∈E

Gt
klz

t
kl (35)

s. t. (1)− (34) (36)

xt
ijkl ≥ 0 i, j, k, l ∈ N, i 6= j, k 6= l, t ∈ T (37)

ut
ijk ≥ 0 i, j, k ∈ N, i 6= j, k 6= i, j, t ∈ T (38)

vtijl ≥ 0 i, j, l ∈ N, i 6= j, l 6= i, j, t ∈ T (39)

stij ≥ 0 i, j ∈ N, i 6= j, t ∈ T (40)

ytk ∈ {0, 1} k ∈ H (41)

ztkl ∈ {0, 1} {k, l} ∈ E (42)

Remark 1 The model proposed above can easily accommodate the situation in which the

set of demand nodes varies over the planning horizon. This can be achieved by simply

setting to zero the flow originated and destined to a node in the periods in which the node

is not ‘active’.

The MPHLP has the classical uncapacitated multiple allocation hub location problem

as a particular case and thus it is NP-Hard.

The previous formulation is very heavy as was confirmed by a set of preliminary com-

putational tests performed with the general solver CPLEX showing that the model above

can only be solved with this solver for very small instances. For this reason we propose in

the next section a heuristic procedure aiming at obtaining feasible solutions to the problem

in an acceptable CPU time.

3 A local search-based procedure

In this section we present a local search-based procedure for obtaining feasible solutions to

MPHLP.

As defined above, two types of decisions exist in the MPHLP, namely those related

with the hub level network and those related with the flows, which in turn, determine the

non-hub level network. One of the difficulties in solving the MPHLP arises from the need
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to integrate these two types of decisions. As we show next, if we knew the optimal hub

level network, finding the optimal flows would be an easy problem to solve. Therefore we

can simply follow widely known methodologies for uncapacitated multiple-allocation hub

location problems (e.g. p-hub median problem). This situation motivates a procedure in

which the focus is put in the hub level network. In particular, the procedure attempts to

progressively find better feasible solutions by performing changes in the hub level network.

It is important to note that the knowledge about the operating hub edges in some

period is sufficient to get the knowledge about the entire hub level network in that period.

Accordingly, we can fully describe the hub level network from the set of operating hub

edges because a decision made for some hub edge may determine decisions for the hubs.

For instance, if a hub edge {k, l} is established in the beginning of a time period t, this

means that the hubs k and l must be active at that time. If this is not the case, the hubs

should also be established. Conversely, if an existing hub edge {k, l} finishes its operation

at the end of period t hubs k and/or l may be removed if any of them becomes disconnected

from the hub level network.

Starting with a feasible hub level network we propose a local search procedure performed

in the hub level network. Each time a new hub level network is obtained, the corresponding

non-hub network is determined as shown below and the cost of the corresponding feasible

solution is evaluated.

Before going into the details of the heuristic procedure, we address several important

aspects crucial for the procedure we propose.

3.1 Defining an initial feasible solution

We start by noting that we have a feasible hub level network as long as i) the hubs and

hub edges make a connected sub-network, ii) the end points of the hub edges are operating

hubs and iii) the budget constraints are not violated, we are facing a feasible hub level

network.

A trivial feasible hub level network for MPHLP is obtained by taking the initial con-

figuration and simply not changing it during the planning horizon. In such situation, the

existing hubs and hub edges will be operating in all periods of the planning horizon and

no new hub or hub edge will be installed. Such design leads to a feasible solution. The

budget constraints are not violated because no network component is removed or installed

throughout the planning horizon and it was assumed that the available budget is enough
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to maintain the initial configuration throughout the planning horizon.

Although the hub level network just described may lead to a poor feasible solution, it

leads certainly to a solution very easy to obtain.

Once the network design is defined for all periods of the planning horizon, finding the

optimal flows as well as the cost of the overall solution can be done easily as we show next.

3.2 Finding the optimal flows for a particular multi-period hub

level network

Once the hub level network operating in each period in known, finding the optimal flows

and thus the non-hub level network is something that can be easily done.

However, taking into account that no capacity constraints are considered in MPHLP,

once the hub level network is defined in each period, an optimal way for routing the flow

between each pair origin-destination consists simply in sending all the flow through the

path with the smallest cost that connects the origin and the destination. This reasoning

has been proposed in the literature for other multiple-allocation hub location problems.

This was firstly stated by Campbell [9] and later on explored by Ebery et al. [21] and Ernst

and Krishnamoorthy [23] among others.

For a particular time period t ∈ T , we can build an auxiliary cost matrix Dt, which

contains the costs between the nodes that can be directly connected (considering the hub

level network in this period). For the infeasible connections we set the cost equal to a big

M . This matrix is symmetric because the original matrix [Ct
ij ]i,j∈N is also symmetric.

More formally, defining by H t and Et the set of hubs and hub edges, respectively,

operating in period t ∈ T , algorithm 1 can be used to determine matrix Dt.

Once the matrices Dt, t ∈ T are found, finding the non-hub level network can be easily

done according to algorithm 2, where St denotes the set of non-hub edges in period t ∈ T .

3.3 Computing the cost of a feasible solution

Once the network design is known for all periods of the planning horizon feasible values

for the variables y and z are automatically defined. Denote by {ẑtkl} and {ŷ
t
k} these values.

If we also know the corresponding optimal flows, computing the cost of a feasible solution

can be done straightforwardly according to algorithm 3. In this algorithm, P t
ij denotes the
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Algorithm 1 Finding matrix Dt for each t ∈ T .

for i = 1, . . . , n do

for j = i+ 1, . . . , n do

if i ∈ H t and j ∈ H t and {i, j} /∈ Et then

dtij = dtji = M

else if i ∈ H t and j ∈ H t and {i, j} ∈ Et then

dtij = dtji = αtCt
ij

else if i /∈ H t and j /∈ H t then

dtij = dtji = M

else if i /∈ H t and j ∈ H t then

dtij = dtji = Ct
ij

else if i ∈ H t and j /∈ H t then

dtij = dtji = Ct
ij

end if

end for

end for

set of hub edges in the shortest path from i to j in period t computed by using matrix Dt

(i, j ∈ H t, t ∈ T ) and cost denotes the cost of the actual feasible solution. As before, St

denotes the set of non-hub edges in period t ∈ T .

3.4 Local search procedure

A key element in the procedure we propose for the MPHLP is a neighborhood structure.

As we mentioned above, the knowledge of the hub edges operating in each period

fully characterize the hub level network. Accordingly, for each feasible design for the hub

level network over the planning horizon we define a neighborhood considering only the

operating hub edges. In particular, we consider the variables ztkl introduced in section

2 which characterize the time period (if some) in which a hub edge {k, l} is removed or

established depending on whether the edge is in Ec or in Eo, respectively.

Consider a feasible design for the hub level network defined by the values {ẑtkl} of the

z-variables. We define as the neighborhood of {ẑtkl} every solution {ztkl} obtained from the

former as depicted in the next page. The main components of this exchanging mechanism

regards steps 4a) b) and c). Move 4a) makes the closing period of some (existing) hub edge

to be shifted from its current value t to another period t′; in move 4b), the opening of some
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Algorithm 2 Finding the allocation of non-hubs to hubs for each t ∈ T .

St ← ∅

for i = 1, . . . , n do

for j = i+ 1, . . . , n do

if i /∈ H t or j /∈ H t then

if W t
ij > 0 or W t

ji > 0 then

Find the shortest path P between nodes i and j using matrix Dt

if P has only one edge then

St ← St ∪ {{i, j}}

else

Let (i, hi) and (hj , j) be the first and last edges of P, respectively.

if i /∈ H t and j /∈ H t then

St ← St ∪ {{i, hi}, {hj, j}}

else if i /∈ H t and j ∈ H t then

St ← St ∪ {{i, hi}}

else if i ∈ H t and j /∈ H t then

St ← St ∪ {{hj , j}}

end if

end if

end if

end if

end for

end for

previously selected (new) hub edge is shifted from its current period t to another period

t′; finally, move 4c), forces a hub edge that is not operaing in any period of the planning

horizon to start operating in some period t′.
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Algorithm 3 Evaluating the cost of a feasible solution.

cost←
∑

t∈T

∑

k∈H F t
kŷ

t
k +

∑

t∈T

∑

{k,j}∈E Gt
klẑ

t
kl

for t = 1, . . . , T do

for i = 1, . . . , n do

for j = i+ 1, . . . , n do

if i ∈ H t ∧ j ∈ H t then

cost← cost+
(

W t
ij +W t

ji

)
∑

{k,l}∈P t
ij
αtCt

kl

else if i ∈ H t ∧ j /∈ H t then

Consider p ∈ H t such that {j, p} ∈ St or {p, j} ∈ St

cost← cost+
(

W t
ij +W t

ji

)

(

Ct
jp +

∑

{k,l}∈P t
ip
αtCt

kl

)

else if i /∈ H t ∧ j ∈ H t then

Consider p ∈ H t such that {i, p} ∈ St or {p, i} ∈ St

cost← cost+
(

W t
ij +W t

ji

)

(

Ct
ip +

∑

{k,l}∈P t
pj
αtCt

kl

)

else

Consider p ∈ H t such that {i, p} ∈ St or {p, i} ∈ St

Consider q ∈ H t such that {j, q} ∈ St or {q, j} ∈ St

cost← cost+
(

W t
ij +W t

ji

)

(

Ct
ip + Ct

jq +
∑

{k,l}∈P t
pq
αtCt

kl

)

end if

end for

end for

end for

'

&

$

%

Neighborhood structure

1. Set ztkl ← ẑtkl (t ∈ T ; {k, l} ∈ E)

2. Select an hub edge {k′, l′} ∈ E

3. Select a time period t′ ∈ T

4. Apply one of the following exchange moves depending on the

situation

(a) If {k′, l′} ∈ Ec let t be the period such that ztk′l′ = 1

If t 6= t′ then ztk′l′ = 0 and zt
′

k′l′ = 1

(b) If {k′, l′} ∈ Eo and exists t ∈ T such that ztk′l′ = 1 then

If t 6= t′ then zt
′

k′l′ = 1, ztk′l′ = 0 else zt
′

k′l′ = 0

(c) If {k′, l′} ∈ Eo and ztk′l′ = 0 ∀t ∈ T then zt
′

k′l′ = 1
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The previous instructions that together lead to a new set of values for the decision

variables associated with the operating hub edges in each period of the planning horizon

does not necessarily lead to a feasible hub level design. Note that feasibility is only achieved

by hub networks that are connected in all periods of the planning horizon and also when

the design does not violate the budget constraints.

When finding neighbors of a feasible hub level network we discard moves leading to

disconnected hub level networks in some period. The connectivity of the hub level network

in each period t is tested considering the submatrix Dt defined by the hubs and checking

if there is at least one path of finite length (cost) between each pair of hubs.

Once a new solution is obtained in terms of the hub edges operating in each time

period, the remainder components of the solution can be easily obtained, namely the hubs

operating in each period and the non-hub level network (the latter by using Algorithm 2

after updating matrix Dt using Algorithm 1).

We have gathered so far the necessary ingredients to detail a heuristic procedure for

the MPHLP.

Denote by S the set of feasible solutions to the problem and by N (.) the neighborhood

of a feasible solution. The local search procedure is formalized in Algorithm 4.

Algorithm 4 Local search procedure.

Select a starting solution s0 ∈ S

repeat

Select ŝ ∈ N (s0) ∩ S such that f(ŝ) = min
s∈N (s0)∩S

{f(s)}

if f(ŝ) < f(s0) then

Replace s0 by ŝ

end if

until f(ŝ) ≥ f(s0)

return s0 // s0 is the final feasible solution

4 Computational results

In this section we report the results of the computational tests performed in order to

evaluate the possibility of solving the problem to optimality using the model proposed in
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section 2 and also in order to evaluate the performance of the methodology described in

section 3. We start by describing the test instances considered. Afterwards the results are

presented and analyzed.

4.1 Test instances

In order to perform a set of computational tests, 2 different classes of instances were

generated: Class 1 containing pure randomly generated instances and Class 2 containing

instances generated from the well-known AP data set (Ernst and Krishnamoorthy [22]).

In each class, the characteristics of the instances generated are the following:

• n ∈ {10, 15, 20, . . . , 95, 100}.

• T ∈ {3, 6, 9, 12}.

• |Ec| ∈ {1, 2, 3}.

• α ∈ {0, 7, 0.8, 0.9}.

For each combination of the above parameters, 3 instances were generated in order to

get diversity. Combining the possibilities above we conclude that in total 4104 instances

were generated - 2052 in each class.

The first step in the generation of one instance was to obtain the coordinates of the

nodes. For the instances in Class 2 this is done as usual for the AP instances. In the case

of instances in Class 1 the nodes were randomly generated in a 100 × 100 square. Once

the coordinates of the nodes were available, the other parameters defining a single instance

were generated as follows. In some situations a distinction is made between the instances

in the two classes.

• For the instances in Class 1 the first period flows were generated according to W 1
ij ∼

U{10, . . . , 20}.

In the case of the AP instances (Class 2), for the first period we considered the flows

available in the literature.

Independently from the instance class, for t = 2, . . . , T , W t
ij = ϕ ×W t−1

ij with ϕ ∼

U [1.05; 1.10].
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The random factor ϕ was generated each time a new value is to be obtained. This

comment is also valid for the parameters below.

• FO1
k ∼ U [500; 700], k ∈ Ho.

For t = 2, . . . , T and k ∈ Ho, FOt
k = ϕ× FOt−1

k with ϕ ∼ U [1.05; 1.10].

• FC1
k ∼ U [200; 300], k ∈ Hc.

For t = 2, . . . , T and k ∈ Hc, FCt
k = ϕ× FCt−1

k with ϕ ∼ U [1.05; 1.10].

• FM1
k ∼ U [300; 400], k ∈ H .

For t = 2, . . . , T and k ∈ H , FM t
k = ϕ× FM t−1

k with ϕ ∼ U [1.10; 1.20].

• GO1
kl ∼ U [120; 130], {k, l} ∈ Eo.

For t = 2, . . . , T and {k, l} ∈ Eo, GOt
kl = ϕ×GOt−1

kl with ϕ ∼ U [1.05; 1.10].

• GC1
kl ∼ U [80; 85], {k, l} ∈ Ec.

For t = 2, . . . , T and {k, l} ∈ Ec, GCt
kl = ϕ×GCt−1

kl with ϕ ∼ U [1.05; 1.10].

• GM1
kl ∼ U [100; 110], {k, l} ∈ E.

For t = 2, . . . , T and {k, l} ∈ E, GM t
kl = ϕ×GM t−1

kl with ϕ ∼ U [1.10; 1.20].

• ρt = 1.1, t ∈ T .

• For t = 1, . . . , T , Bt = ξ × Ψ(t) with Ψ(t) =
∑

k∈Hc FM t
k +

∑

{k,l}∈Ec GM t
kl and ξ

defined as follows:

ξ =







3 if t = 1 or t = T

1 + 0.2T − 0.2(t− 1) if t ∈ {2, ..., T − 1}

The automatic generation of values for the budget available in each period is tricky

as one easily gets an infeasible instance or an instance that is not interesting (e.g.

the available budget is too large leading to too loose budget constraints).

• The values Ct
ij were set equal to half of the euclidean distances between the corre-

sponding pairs of nodes. Accordingly, these parameters, are considered static in our

instances. Note that in the case of the AP instances, the distances are firstly divided

by 1000 as usual in these instances.
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Note that the costs FOt
k, FCt

k, FM t
k, GOt

kl, GCt
kl, GM t

kl as well as the factors ρt are

generated similarly for both classes of instances.

Finally, the information about one instance is only complete when an initial configu-

ration is defined. This was done as follows: One node was randomly chosen. From this

node, the least cost edge was found and added to the configuration. Starting from the end

node of this link, again, the least cost edge is found and added to the configuration. We

proceed until we obtain the desired number of edges in the initial configuration.

4.2 Analysis of the results

In order to get a perception of the impact from using the methodology proposed in the

previous section, not only did we run the heuristic but also we considered the feasible

solution associated with the initial configuration if such configuration is never changed

during the planning horizon. Note that the way the budget is generated in each period

assures that the initial configuration leads always to a feasible solution to the problem

which simply consists in keeping such configuration in all periods.

All computational tests were performed on a Machine with a Intel(R) Core(TM)2 Duo

processor, 3.00 GHz, 3.21 GB of RAM.

An attempt was made to solve the problem to optimality using a general solver. We

also attempted to solve the linear relaxation so that lower bounds could be obtained.

Such attempt was made using IBM ILOG CPLEX 12.1. However, successful results were

obtained only for instances with up to 15 nodes. For the instances with 20 nodes, the

solver could only tackle instances with 3 times periods. This attempt shows the relevance

of developing heuristic approaches for the problem we are addressing.

The results obtained with the heuristic presented in the previous section are summarized

in Tables 1 and 2. In each table, the first column depicts the values of the parameters

that were used for summarizing the results. In columns 2-4 we can observe the average,

minimum and maximum percentage of improvement achieved with the solution found by

the heuristic when compared with the solution induced by the initial configuration. The

percentage of improvement was computed according to (VI−VH)/VI ∗100 where VI denotes

the cost of the feasible solution induced by the initial configuration whereas VH denotes

the cost of the solution provided by the heuristic. In columns 5-7 we can observe the

cpu time (average, minimum and maximum) required by the heuristic to find a feasible

configuration.
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Table 1 presents the results for the instances in Class 1 whereas Table 2 contains the

same information but for the instances in Class 2. Each table is divided into 3 sub-tables:

the first organized by the different values of n; the second by the values of T , the third by

the values of α. Accordingly, each row in Tables 1a and 2a corresponds to 108 instances;

each row in Tables 1b and 2b corresponds to 513 instances; finally, each row in Tables 1c

and 2c corresponds to 684 instances.

Observing Tables 1a and 2a we conclude the in terms of the improvement over the

initial configuration, no pattern can be found. The instances seem to behave in a relative

similar manner. It is interesting also to note that the improvement in the AP instances

seem slightly larger than the improvement that occurred in the purely randomly generated

instances. This is more evident when we observe the maximum improvement values that

in the AP instances reached around 140% but in the instances of Class 1, did not go over

81%. As it was naturally expected, the cpu time increased roughly by a factor of 1000

when we moved from instances with 10 nodes to instances with 100 nodes.

Observing tables 1b and 2b we see that as far as the average improvement is concerned,

the two classes behave differently. In the case of class 1, (1b) the average improvement

increased with T which gives an indication that in instances with a longer planning horizon

more time is given for improving the initial configuration. this behavior was not observed in

the instances in Class 2. In this case, the instances in which a better (average) improvement

was achieved are the ones corresponding to T = 6. Finally, as expected, the cpu time

increases by a factor of roughly 30 when we go from T = 3 to T = 12.

As far as the value of the discount factor α is concerned, the results show no pattern

worth mentioning. The average results were not significantly influenced by the value of α.

The results presented in the previous sub-section give an overall figure for the tested

instances. Nevertheless, in order to get a better perception of the changes over time in

the network structure we considered three instances in Class 2 and represent the network

structure below. The three instances considered refer to one AP data instance with 25

nodes and 6 times periods. The only difference among the three instances is the value of
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Improvement (%) Time (sec.)

n average minimum maximum average minimum maximum

10 13.23 0.00 55.05 1.40 0.06 5.02

15 14.40 0,00 54.28 3.60 0.17 14.28

20 17.34 2.96 41.48 7.81 0.40 57.35

25 22.31 5,47 80.93 9.34 0.71 208.31

30 20.30 0.28 54.49 23.37 1.19 127.33

35 19.09 4,75 43.17 32.65 2.34 143.48

40 19.49 4.08 41.47 65.20 3.05 660.62

45 19.08 5,49 62.29 70.97 4.44 250.37

50 16.14 4.08 36.83 102.13 6.65 660.74

55 16.50 5,35 39.43 121.58 7.99 461.81

60 16.51 2.78 42.53 143.64 10.48 663.85

65 17.86 8,70 35.41 205.76 15.56 907.86

70 13.84 4.97 33.82 281.67 18.89 1535.58

75 13.26 4,63 35.84 325.22 22.29 1399.72

80 14.25 3.61 51.48 441.46 26.12 2227.87

85 15.78 5,21 42.38 498.49 35.50 2097.63

90 16.26 6.60 39.24 679.61 37.24 3476.77

95 13.81 3,01 41.42 803.33 47.00 4587.93

100 15.54 7.39 30.81 973.98 65.25 13198.27

(a) Results summarized by the different values of the number of nodes - n.

Improvement (%) Time (sec.)

T average minimum maximum average minimum maximum

3 11.93 0.00 46.23 26.32 0.06 166.49

6 14.38 0.00 55.05 113.25 0.21 1344.79

9 19.55 3.01 61.38 276.50 0.77 3144.38

12 20.47 0.41 80.93 593.92 1.01 13198.27

(b) Results summarized by the different values of the number of periods - T .

Improvement (%) Time (sec.)

α average minimum maximum average minimum maximum

0.7 16.72 0.00 66.39 245.50 0.06 3476.77

0.8 16.53 0.00 64.93 268.03 0.06 13198.27

0.9 16.49 0.00 80.93 243.96 0.06 4587.93

(c) Results summarized by the different values of the discount factor - α.

Table 1: Results for the instances in Class 1.
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Improvement (%) Time (sec.)

n average minimum maximum average minimum maximum

10 15.02 0.34 52.41 1.00 0.05 6.29

15 20.14 0.44 61.19 4.34 0.17 23.84

20 18.06 1.83 40.21 10.66 0.39 49.80

25 29.03 2.80 87.33 16.49 0.82 125.61

30 20.12 1.14 60.44 27.85 1.25 241.96

35 16.29 2.82 57.72 69.75 2.19 254.68

40 19.61 0.98 84.81 91.10 3.14 530.54

45 26.96 1.40 79.38 150.29 4.81 579.11

50 21.92 1.40 85.96 159.20 6.84 731.91

55 32.81 0.18 139.32 309.89 9.11 2083.19

60 24.83 2.08 118.11 300.71 12.19 1672.34

65 28.78 3.93 126.71 556.78 16.12 2868.55

70 28.08 2.40 114.30 617.91 20.09 3255.08

75 21.51 1.78 104.87 639.57 26.52 3001.93

80 23.49 2.42 78.95 771.72 27.37 4092.75

85 22.71 1.66 78.43 887.22 42.54 3747.88

90 17.98 1.77 72.38 1167.61 37.65 5932.95

95 27.86 0.90 82.01 1700.23 50.29 6364.38

100 19.90 4.02 66.26 1737.13 58.01 6652.66

(a) Results summarized by the different values of the number of nodes - n.

Improvement (%) Time (sec.)

T average minimum maximum average minimum maximum

3 23.12 3.13 118.11 38.16 0.05 294.89

6 27.06 2.70 139.32 230.45 0.20 2399.22

9 21.57 2.40 104.87 578.01 0.97 4185.16

12 19.85 0.18 107.94 1096.63 0.73 6652.66

(b) Results summarized by the different values of the number of periods - T .

Improvement (%) Time (sec.)

α average minimum maximum average minimum maximum

0.7 22.97 0.23 139.32 483.91 0.05 6364.38

0.8 22.91 0.20 137.97 487.10 0.06 6572.16

0.9 22.82 0.18 136.91 486.43 0.05 6652.66

(c) Results summarized by the different values of the discount factor - α.

Table 2: Results for the instances in Class 2.

29



1
2

3

4

5

6

7 8 9
10

11 12
13 14 15

16
17 18

19

20

21
22

23
24 25

(a) Initial configuration.
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(c) Periods 2 and 3.
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(d) Periods 4, 5 and 6.

Figure 3: Hub level network for one of the AP data instances with 25 nodes and 6 periods

- α = 0.7.

α. In particular we consider the three values of α that were mentioned above: 0.7, 0.8 and

0.9. The results can be observed in Figures 3 and 4.

In these figures apart from the initial configuration we present the different configura-

tions that the network assume over time.

In the examples considered, we can observe that an initially peripheral network was

progressively changed to a more central structure. It should also be noted that a slight

change in the value of α led to different evolutions of the network structure. This example
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(d) Periods 3, 4, 5 and 6.

Figure 4: Hub level network for one of the AP data instances with 25 nodes and 6 periods

- α = 0.8, 0.9.

31



is illustrative of the impact that the value of the discount factor may have in a hub level

network. In terms of the total cost we have:

For α = 0.7, the initial configuration induces a feasible solution having cost 601740.99.

The multi-period solution which network structure is represented in figures 3b-3d has a

cost of 455597.58. This difference represents an improvement of 24.28%.

For α = 0.8, the cost of the feasible solution induced by the initial configuration is

604024.29 whereas the cost of the solution found by the heuristic (which network structure

is depicted in Figures 4b-4d) is 451015.05. The difference represents an improvement of

25.33%.

Finally, for α = 0.9, the costs of the initial feasible solution is 605997.97 and the

heuristic reached a feasible solution with a cost of 454468.79. The improvement percentage

was 25.00%.

5 Conclusion

In this paper, a multi-period phase-in/phase-out hub location problem was considered in

which several classical assumptions often considered in hub location literature were relaxed.

A mathematical programming formulation was developed. Due to the complexity of the

problem, a heuristic approach was also proposed which is a local search based procedure.

The results show that by using the proposed approach, significant improvements were

achieved if we compare the solutions obtained with the solution induced by a static network

structure.

This work raises several questions which require further research. The first regards

the routing costs. The model we considered in this paper assume that there is a discount

factor for the flow that traverses the hub edges. However no mechanism was considered

for assuring that the flow in the hub edges exceeds the flow in the non hub edges and thus

that the discount factor is consistent. This is a well-known weakness in many hub location

problems. Nevertheless it deserves more research, namely in the same context that we

considered in this paper.

Another important research direction regards the development of lower bounds for the

problem at hand. This is important as a means for properly evaluating the quality of

feasible solutions. Currently, the quality of the solutions produced by the methodology

that we developed was measured only by comparing those solutions with the ones induced
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by the network structure that is operating at the beginning of the planning horizon.
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[30] M. Labbé, H. Yaman, and E. Gourdin. A branch and cut algorithm for the hub

location problems with single assignment. Mathematical Programming, 102:371–405,

2005.

[31] G. Mayer and B. Wagner. Hublocator: an exact solution method for the multiple

allocation hub location problem. Computers & Operations Research, 29:715–739, 2002.

[32] M.T. Melo, S. Nickel, and F. Saldanha-da-Gama. Dynamic multi-commodity capaci-

tated facility location: A mathematical modeling framework for strategic supply chain

planning. Computers & Operations Research, 33:181–208, 2006.

[33] S. Nickel, A. Schobel, and T. Sonneborn. Hub location problems in urban traffic

networks. In J. Niittymaki and M. Pursula, editors, Mathematics Methods and Opti-

mization in Transportation Systems, pages 1–12. Kluwer Academic Publishers, 2001.

36



[34] M. O’Kelly. A quadratic integer problem for the location of interacting hub facilities.

European Journal of Operational Research, 32:393–404, 1987.

[35] M. O’Kelly. The location of interacting hub facilities. Transportation Science, 20:

92–106, 1989.

[36] D. Skorin-Kapov, J. Skorin-Kapov, and M. O’Kelly. On tabu search for the location

of interacting hub facilities. European Journal of Operational Research, 73:502–509,

1994.

[37] D. Skorin-Kapov, J. Skorin-Kapov, and M. O’Kelly. Tight linear programming re-

laxations of uncapacitated p-hub median problems. European Journal of Operational

Research, 94:582–593, 1996.

[38] H. Topcuoglu, F. Corut, M. Ermis, and G. Yilmaz. Solving the uncapacitated hub

location problem using genetic algorithms. Computers & Operations Research, 32:

967–984, 2005.

[39] H. Yaman. Star p-hub median problem with modular arc capacities. Computers &

Operations Research, 35:3009–3019, 2008.

[40] H. Yaman and G. Carello. Solving the hub location problem with modular link ca-

pacities. Computers & Operations Research, 32:3227–3245, 2005.

37


