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Abstract

In recent years several countries have set up policies that allow exchange of kidneys between two or more
incompatible patient-donor pairs. These policies lead to what is commonly known as kidney exchange
programs, and the underlying optimization problems can be formulated as integer programming models.

Previously proposed models for kidney exchange programs have exponential number of constraints or
variables, which makes them fairly difficult to solve when the problem size is large. In this work we propose
two compact formulations for the problem, explain how these formulations can be adapted to address some
problem variants, and provide results on dominance of some models over others. Finally we present a
systematic comparison between our models and two previously proposed ones via thorough computational
analysis. Results show that compact formulations have advantages over non-compact ones when the problem
size is large.
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1. Introduction

Kidney transplants are essential for survival of many patients suffering from kidney failures, but finding
suitable kidneys can be difficult because of their scarcity as well as blood or tissue incompatibility between
donors and patients. For a long time, deceased donors were typically the most acceptable source of kidneys
for transplantation. However, they only met a tiny fraction of the demand and alternative transplanta-
tion policies considering living donors progressively stepped forward. Within these policies, if a patient
had someone willing to donate a kidney and the patient–donor pair was compatible, then the transplant
could be done. However, if a patient and the prospective donor were not physiologically compatible, then
transplantation could not be performed.

In recent years kidney exchange programs brought new hope for many kidney patients. These programs
involve patient–donor pairs in which donors are incompatible with their recipients. The key aspect is to
organize exchanges between a number of such pairs so that patient P in one pair receives a kidney from
donor D in the other pair. Figure 1 illustrates the simplest case with only two pairs, (P1, D1) and (P2, D2),
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where patient and donor in each pair are incompatible (dotted lines represent incompatibilities). However,
P1 is compatible with D2 and P2 is compatible with D1. Previously, when exchanges between pairs were
not allowed, no transplants could be performed in this situation. Within the evolving frameworks of new
programs, exchanges between such pairs are allowed and the two transplants can be performed (arrowed
lines represent the exchange in the figure).

Kidney exchange programs have already been introduced in many countries, including South Korea [1],
Switzerland [2], Turkey [3], Romania [4], The Netherlands [5, 6, 7], UK [8, 9] and the US [10, 11, 12, 13]. Very
recently, similar programs have also been set up in other countries: in 2010, Canada, Portugal, Australia,
and New Zealand kicked-off their own programs while Spain initiated its program in 2011.

P1

P2

D1

D2

Figure 1: A 2-way exchange.

The objective for optimization in a kidney exchange program is generally to maximize the collective
benefit for a given pool of incompatible pairs, usually measured by the number of possible kidney ex-
changes [11, 5]. – in the entirety of the paper we will refer to this optimization problem as the Kidney
Exchange Problem (KEP). Although such optimal solution is typically desirable, there are other factors
which may also be considered in some situations; e.g. maximize the weighted sum of kidney exchanges [14]
and/or the quality-adjusted life expectancy of transplant candidates [15].

One of the crucial questions for the KEP is the definition of a bound on the number of pairs that can
be involved in an exchange. When a kidney exchange involves only two donor-recipient pairs as illustrated
in Figure 1 it is commonly known as a 2-way or 2-cycle exchange. Basically this is an alternating directed
cycle of two donors and two recipients in which donor from one incompatible pair gives one kidney to the
recipient in the other pair and vice versa. One can note that size of the exchange cycle can be increased. For
example, the 3-way exchange presented in Figure 2 allows 3 patients to get transplants instead of 2; solid
lines here represent compatibilities and arrowed lines represent the actual exchanges that derive maximum
collective benefit.

P1

P2

P3

D1

D2

D3

Figure 2: A 3-way exchange.

Generally k-cycle exchanges with k ≥ 3 can be better for optimization as it has the potential for
increasing the options for involving more incompatible pairs in an “exchange cycle”. If there is no bound
on the number of pairs in an exchange, i.e., k is not fixed (k = n), the problem turns into an assignment
problem and can be solved in polynomial time [12]. But ideally all operations involved in a cycle should be
performed simultaneously so that donors remain committed when the incompatible partners receive other
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donors’ kidneys. Therefore for a solution to be practical and manageable, the length of the cycles should be
restricted for at least two main reasons. First, the number of personnel and facilities needed for simultaneous
operations of donors and patients raise several logistic issues that can make it prohibitively inconvenient
to handle too many operations simultaneously [12]. Second, because the last-minute tests on donors and
patients can bring out new incompatibility issues that can cause a kidney donation and related exchanges
in the cycle to be cancelled, it is preferable for the cycles to be shorter.

For a given pool of donor-recipient pairs, a 2-cycle exchange can be seen as a task of pairwise compatibility
matching, and Edmond’s maximum cardinality matching algorithm [16] can provide an optimal solution in
polynomial time. The problem with k-cycle exchange certainly is a generalized model and much more
interesting for practical applications. However, the associated problem is known to be NP -complete [17]
and difficult to solve efficiently when a problem instance is large.

Current work on solving the KEP focuses mostly on Integer Programming (IP) formulations. Two IP
models addressed in this paper as “edge formulation” and “cycle formulation” were proposed independently
in [12] and [18]. Despite the very good results reported for the cycle formulation in [12], the question of
finding a compact formulation that has the number of variables and constraints bounded by a polynomial
on the size of the problem (i.e., on the total number of pairs in a donor-recipient pool), is still open: the
cycle formulation presents an exponential number of variables, while the edge formulation has exponential
number of constraints.

This paper focuses on mathematical modelling aspects of the KEP: we propose two new compact for-
mulations for the problem. Moreover we investigate the relationships of different formulations and provide
some proofs of dominance of one formulation over the other in the sense of values of upper bounds for
optimal solutions obtained with the linear relaxations (LP relaxations) of each formulation. Finally, a sys-
tematic comparison of these formulations with the two previously reported ones is presented by thorough
computational analysis.

The paper is organized as follows. Following this introduction we review in Section 2 relevant literature
with respect to variants of the KEP and solution methods. In Section 3 the problem statement and the
known IP models are presented. The new compact formulations for the KEP are introduced in Section 4.
In Section 5 the adaptation of formulations for variants of the KEP is discussed. The interrelations of upper
bounds of linear relaxations for the presented IP models are investigated in Section 6. Finally Section 7
reports the computational analysis and conclusions on the effectiveness of each formulation.

2. Literature review

The concept of kidney exchange program for incompatible patient-donor pairs was first promoted in
1986 in [19] as an alternative to deceased donor programs. Since then, several models for the KEP have
been proposed that differ mostly on type of exchanges allowed, matching requirements and optimization
objectives. For ethical issues concerning the programs, readers may see [20, 21]; an overview of contemporary
ideas and challenges can be found in [22, 23]. In this section we survey KEP variants as well as optimization
solution methods used to attack the problem.

2.1. Problem variants

The basic variant of the KEP is a 2-exchange mechanism involving two patients in two distinct pairs
such that each patient is incompatible with the associated donor [24, 25, 11] (see Figure 1). The notion can
be generalized to a k-exchange (k ≥ 3) in which up to k pairs can be involved in the exchange [5, 12, 8].

Using graph theory the underlying optimization problem can be embedded on a directed graph in which
vertices represent non-compatible donor-recipient pairs and arcs between vertices represent compatibilities.
The KEP shown in Figure 2 is presented in a directed graph in figure 3.

Variants of the k-exchange problem can include altruistic donors; i.e., donors that are not associated to
any patient, but willing to donate a kidney to someone in need. Non-directed (ND) exchanges occur when
an altruistic donor gives a kidney to a patient in a kidney exchange program and the recipient’s donor is
“dominoed” to the next compatible patient on the deceased donor waiting list, or is used to add another
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P1|D1 P2|D2

P3|D3

Figure 3: A 3-way exchange on a directed graph.

incompatible pair to the chain [26, 27]. The maximum size of a chain is mandated by national or regional
programs. Figure 4 presents a chain of size 2: an altruistic donor donates a kidney to patient of pair 1,
P1, the patient’s related donor D1 donates to P2, and D2 donates to the first compatible recipient in the
deceased donors waiting list.

Altruistic
Donor

P1|D1 P2|D2

Waiting List
for Deceased
Donor Kidney

Figure 4: Non-directed donation.

Contrary to the above mentioned problems where simultaneity of exchanges is considered, Never-Ending
Altruistic Donor (NEAD) chains allow non-simultaneity of exchanges [28, 29, 30, 23]. Unlike the conventional
form of non-direct donation, where the size of the chain is limited, the cascade in NEAD may theoretically
never end. The first donor who is incompatible, and whose related patient receives a kidney from the
altruistic donor, gives his kidney to someone else with whom he is compatible. The recipient’s incompatible
donor can then do the same, and so on. By not assigning a kidney to a patient in the deceased donor list
the cascading donor chain may continue indefinitely, unless a donor whose related recipient has already been
transplanted drops out of the program.

The inclusion of compatible pairs in kidney exchange programs defines one more variant of the KEP [31].
In this variant the compatible pair can be involved into an exchange only in case the patient of this pair
benefits from being in the pool (e.g. receive a “better” kidney).

Another variant is the multiple donors case, when one or more patients have multiple donors associated.
In this case if the patient is selected for kidney transplantation the donor that would allow a cycle to be
created will be the one selected [12].

All variants of KEP outlined above consider the problem as a static or offline problem. But the problem
can also be dynamic (online) when isolated patients, patient-donor pairs, and altruistic donors appear and
expire over time [32, 33, 15].

2.2. Solution methods

The complexity of k-exchange problem was investigated in [17, 12, 8]. In [17, 12] it is shown that for a
given graph G and k ≥ 3 the problem of deciding if G admits a perfect cycle cover containing cycles of length
at most k is NP -complete. The proof uses reduction to 3D–matching problem which is NP -complete. In [8]
the authors proved the APX-completeness of the problem of finding a maximum size exchange involving only
2- and 3-cycles. In other words they claim that the 3-exchange KEP allows polynomial-time approximation
algorithm with approximation ratio bounded by a constant.

As mentioned earlier, the basic variant of the KEP — 2-exchange problem — can be solved in polynomial
time using Edmond’s algorithm [16] for maximum cardinality matching. This solution approach was followed
by [11] and [34]. For unrestricted k, the problem is also solved in polynomial time using a reduction to the
maximum-weight perfect matching problem in a bipartite graph [14].
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When k ≥ 3 a natural and perspective way for attacking the KEP is through IP models. Two different
integer programs were proposed in [12] and [18]: the edge and the cycle formulations. In [12] it is presented
a sketch of a proof that the cycle formulation provides better upper bound of the optimal solution with
LP relaxation than the edge formulation. In the same work a cutting plane method was implemented for
the edge formulation while column generation method with branch-and-bound was designed for the cycle
formulation. The cycle formulation is used in [14] to solve the KEP in UK. The program in UK allows direct
and altruistic exchanges and considers a set of criteria that should be pursued in a hierarchical way.

Results related to the potential of NEAD strategy were presented in [29]. In [27] the authors created a
pool of incompatible pairs based on the statistic data for blood-type, positive cross-matching probabilities,
and others, and looked for 2-exchanges. They implemented Monte Carlo simulations and calculated the
maximum number of transplants under different scenarios when including ND donors and NEAD chains
and concluded that NEAD chains are not clearly superior in terms of the number of transplants achieved.
The authors of [30] presented some simulations similar to [27], but allowing long chain segments. With
this additional flexibility they concluded that NEAD chains lead to more transplants. Some theoretical and
computational analysis of the efficacy of chains initiated by altruistic donation are provided by [28].

The possibility of opening the pool of kidney exchange programs to compatible pairs has been addressed
by e.g. [35] and [31]. A mixed pool of compatible and incompatible pairs was simulated in [31], the results
showing the benefit of such a policy in terms of increase of probability of matching incompatible patients that
might otherwise not get a compatible donor. But the inclusion of compatible pairs in a pool of incompatible
pairs is a controversial topic. Some of the ethical aspects associated with it are pointed out in [35].

Some results on the dynamic variant of KEP are reported in [32, 33, 15]. The authors in [32] study
how exchanges should be conducted through a centralized mechanism in a dynamically evolving agent pool
with time and compatibility based preferences. They derive dynamically efficient 2-way and multi-way
exchange mechanisms that maximize total discounted exchange surplus. In [33], KEP is considered an
online problem in which patient-donor pairs and altruistic donors appear and expire over time. The authors
studied trajectory-based online stochastic optimization algorithms for this problem. They identified tradeoffs
between different parameters and developed an experimental methodology for setting them.

The work in [15] considers KEP as a dynamic resource allocation problem with three objectives: maximize
the quality-adjusted life expectancy of transplant candidates (clinical efficiency), and minimize two measures
of inequity – the first measure is a linear function of the likelihood of transplantation of the various types of
patients and the second is a quadratic function that quantifies the differences in mean waiting times across
patient types. The dynamic status of patients is modelled by a set of linear differential equations.

3. Problem definition and formulation

As indicated in Figure 3, graph theory can provide a natural framework for representing the KEP models.
Let G(V,A) be a directed graph with the set of vertices V consisting of all incompatible patient-donor pairs
and the set of arcs A designating compatibilities between the vertices. Two vertices i, j ∈ V are connected
by arc (i, j) if the patient in pair j is compatible with the donor in pair i. If the objective is other than
maximizing total number of transplants (e.g., maximize weighted exchange) to each arc can be associated a
weight wij , otherwise wij = 1 ij ∈ A.

Figure 5 illustrates an example where four incompatible pairs are considered, the compatibility between
pairs being represented by weighted arcs. An exchange is defined by a set of disjoint cycles in the whole
graph and it is feasible if every cycle length does not exceed a given limit k. In Figure 5 for k = 3 the
possible cycles are 1-2-3-1 and 3-4-3. However these cycles are not vertex-disjoint for having vertex 3 in
common.

If only 2-way exchanges can be considered, the maximum number of transplants in this pool will be two
(between pairs 3 and 4). However, if up to 3 pairs can be involved in an exchange the optimal matching for
this example will be three (donor 1 gives a kidney to patient 2, donor 2 to patient 3, and donor 3 to patient
1).

Definition: The Kidney Exchange Problem can be defined as follows:
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Figure 5: KEP graph.

Find a maximum weight packing of vertex-disjoint cycles having length at most k.

One of the most effective ways to deal with it is using Integer Programming. Below we introduce the
two formulations previously proposed in the literature for this problem: the edge and cycle formulations.

3.1. Edge formulation

In the edge formulation, a variable xij is associated with each arc (i, j) ∈ A in the graph G(V,A), defined
as follows:

xij =

{
1 if patient j gets a kidney from donor i,
0 otherwise.

The following IP formulation for the KEP can be found in [12] and [18]:

Maximize
∑

(i,j)∈A

wijxij (1a)

Subject to:
∑

j:(j,i)∈A

xji =
∑

j:(i,j)∈A

xij ∀i ∈ V (1b)

∑
j:(i,j)∈A

xij 6 1 ∀i ∈ V (1c)

∑
16p6k

xipip+1 6 k − 1 ∀paths (i1, i2, · · · , ik, ik+1) (1d)

xij ∈ {0, 1} ∀(i, j) ∈ A. (1e)

The objective function (1a) maximizes the weighted sum of the exchange – in the case of unitary weights,
it corresponds to maximizing the total number of transplants. Constraints (1b) assure that patient i recieve
a kidney iff donor i donates a kidney.Constraints (1c) guarantee that a donor can only donate one kidney
and constraints (1d) enforce the cycle-length: to exclude cycles larger than k, we need to make sure that
every path of length k arcs does not have more than k − 1 arcs in a feasible exchange. This constraint
requires all paths of length k to be considered explicitly in the model. In general the number of such paths
can grow exponentially with k.

3.2. Cycle formulation

An alternative IP formulation for the edge formulation is the so called cycle formulation. Let C(k) be
the set of all cycles in G with length at most k and define a variable zc for each cycle c ∈ C(k):

zc =

{
1 if cycle c is selected for the exchange,
0 otherwise.
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The model can be written as follows (where wc =
∑

(i,j)∈c
wij):

Maximize
∑

c∈C(k)

wczc (2a)

Subject to:
∑
c:i∈c

zc ≤ 1 ∀i ∈ V (2b)

zc ∈ {0, 1} ∀c ∈ C(k). (2c)

In the case of unitary weights, wc equals the number of edges in c, i.e., the number of transplants
associated with cycle c. The objective function (2a) maximizes the weighted number of transplants. Con-
straints (2b) ensure that every vertex is in at most one of the selected cycles (i.e., each donor may donate,
and each patient may receive only one kidney). Compared to the edge formulation, the difficulty in this
formulation is induced by the exponential number of variables. Indeed, the number of cycles can grow
exponentially with k.

4. New compact formulations

The number of constraints or variables in previously proposed formulations for the KEP can grow ex-
ponentially with k. It is known that such formulations can sometimes provide better bounds with linear
relaxation than “compact” ones [36] but computationally the size of the problem may become a bottleneck
as solution procedures can take long time for solving large problem instances.

We present two new formulations for the problem: the edge assignment formulation and the extended edge
formulation. Each of these formulations is compact, i.e., both the number of variables and constraints are
bounded by a polynomial on the size of the problem, given by the number of pairs. In the edge assignment
formulation the path constraints represented by (1d) are reformulated using additional assignment variables.
In the extended edge formulation an extra index will be introduced in the variables xij for allowing the cycle
cardinality constraints to be created in a simple way. In the next couple of sections we present the IP
models. A discussion on their downsizing into “reduced” formulations is also provided.

4.1. Edge-assignment formulation

The edge-assignment formulation differs from the edge formulation in section 3.1 by replacing the “path
constraints” in equations (1d) by a set of alternative constraints.

Let L be an upper bound on the number of cycles in any solution. For instance, a simple upper bound
is L = |V | as the number of cycles cannot exceed the number of vertices. Let each cycle in the solution be
represented by l, 1 ≤ l ≤ L and define the following assignment variables:

yli =

{
1 if node i belongs to cycle l,
0 otherwise.

With these additional variables, we can write the cycle cardinality constraints as:

∑
i

yli 6 k ∀l ∈ 1, . . . , L. (3a)

It is necessary now to ensure that each node i is properly assigned to a cycle l, and this is done using
the following constraints:

∑
l

yli =
∑

j:(i,j)∈A

xij ∀i ∈ V (4a)

yli + xij 6 1 + ylj ∀(i, j) ∈ A, ∀l ∈ 1, . . . , L (4b)

yli ∈ {0, 1} ∀i ∈ V, ∀l ∈ 1, . . . , L. (4c)

7



Constraints (4a) ensure that node i is in a cycle (
∑

j:(i,j)∈A xij = 1) if and only if there is an assignment

of i to some l (
∑

l y
l
i = 1). Constraints (4b) state that if node i is in cycle l (yli = 1) and donor i gives a

kidney to recipient j (xij = 1) then node j must also be in cycle l (ylj = 1). An alternative to this set of
constraints could be obtained by replacing xij by xji in (4b).

The edge-assignment formulation is composed of constraints from the edge formulation — (1a), (1b),
(1c) and (1e) — together with the constraints (3a), (4a), (4b) and (4c).

For the formulation given above, in some cycle l, the set of nodes i ∈ l giving yli = 1 can belong to more
than one cycle. However this is not a problem because the total number of arcs (or nodes) in a cycle cannot
exceed k and cycles are guaranteed to have no more than k arcs.

Furthermore, the edge assignment formulation allows for multiple equivalent solutions. If there is a
solution having p cycles represented by indices l1, . . . , lp, other orderings of p indices may correspond to the
same solution as exemplified in Figure 6. A solution consisting of cycles between pairs 2, 3 and 4 indexed
by l1 = 1 and pairs 1 and 5 indexed by l2 = 2 is equivalent to having pairs 1 and 5 indexed by l1 = 1 and
pairs 2, 3 and 4 indexed by l2 = 2.

4

5

1

2

3

Cycle 1

+

4

5

1

2

3

Cycle 2

4

5

1

2

3

Complete solution

(a) Solution one

4

5

1

2

3

Cycle 1

+

4

5

1

2

3

Cycle 2

4

5

1

2

3

Complete solution

(b) Solution two

Figure 6: Multiplicity of equivalent solutions

One way to avoid this multiplicity of solutions is by representing each cycle by its node with the lowest
index. In other words, for L = |V |, a cycle having nodes i1, . . . , ir is represented by index l = min{i1, . . . , ir}.
In the example of Figure 6 only the second solution satisfies this condition, hence the first solution would not
be considered. In this case only variables yli with i ≥ l are necessary, and this can be enforced by restricting
the variables yli to indices 1 ≤ l ≤ i ≤ L and by adding constraints:

yli 6 yll ∀i, l ∈ V, i > l (5a)
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Reduced edge assignment formulation

In some situations the variable yli can be eliminated for tightening the model further if l and i cannot be
in the same cycle. Let Ṽ l = {i ∈ V : i ≥ l} and dlij denote the shortest path distance in terms of arcs in

graph G from i to j for i, j ∈ Ṽ l such that the path passes only through vertices of set Ṽ l. Let dlij = +∞ if

there is no such path from i to j. For a given i if dlli + dlil > k, then there is no cycle with length k or less
containing both nodes l and i. In this case the variables yli need not to be considered in the model. More
precisely, for each vertex l ∈ V , let us build the set of vertices V l = {i ∈ V |i ≥ l and dlli +dlil ≤ k}. Denote
by L the set of indices l such that V l 6= ∅. The reduced edge assignment formulation can now be represented
by equations (6a) – (6i).

maximize max
∑

(i,j)∈A

wijxij (6a)

subject to
∑

j:(j,i)∈A

xji =
∑

j:(i,j)∈A

xij ∀i ∈ V (6b)

∑
j:(i,j)∈A

xij 6 1 ∀i ∈ V (6c)

∑
i∈V l

yli 6 k ∀l ∈ L (6d)

∑
l∈L:i∈V l

yli =
∑

j:(i,j)∈A

xij ∀i ∈ V (6e)

yli + xij 6 1 + ylj ∀(i, j) ∈ A, i ∈ V l, ∀l ∈ L (6f)

yli 6 yll ∀i ∈ V l, l ∈ L (6g)

yli ∈ {0, 1} ∀i ∈ V l, ∀l ∈ L (6h)

xij ∈ {0, 1} ∀(i, j) ∈ A (6i)

4.2. Extended edge formulation

For extended edge formulation consider L copies of the graph G, and let l be the index of a copy. Recall
that L is an upper bound on the number of cycles in a solution. In each copy l at most k edges can create a
cycle and each node i ∈ V can belong to at most one such cycle. This can be captured by “cycle cardinality
constraints” in a new model using the variables xl

ij defined as follows:

xl
ij =

{
1 if arc (i, j) is selected to be in copy l of the graph,
0 otherwise.

The extended edge formulation being written as:

maximize
∑
l

∑
(i,j)∈A

wijx
l
ij (7a)

subject to
∑

j:(j,i)∈A

xl
ji =

∑
j:(i,j)∈A

xl
ij ∀i ∈ V,∀l ∈ {1, ...L} (7b)

∑
l

∑
j:(i,j)∈A

xl
ij 6 1 ∀i ∈ V (7c)

∑
(i,j)∈A

xl
ij 6 k ∀l ∈ {1, ...L} (7d)

xl
ij ∈ {0, 1}. ∀(i, j) ∈ A,∀l ∈ {1, ...L} (7e)
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The objective (7a) is to maximize the total weight of the arcs taken from all copies of the graph.
Constraints (7b) state that in each copy l of the graph, the number of kidneys received by patient i is
equal to the number of kidneys given by donor i. To make sure that a donor/patient intervene only once,
constraints (7c) ensure that a node can only be selected in at most one copy of the graph. Constraints (7d)
state that at most k edges can be used from each copy of the graph. This essentially prevents the cycles
from becoming larger than k as each copy of the graph allows only cycles of length k or less. There can be
more than one cycle in a copy of the graph but the total number of edges in all the cycles is less than k.

As with the edge-assignment formulation the extended edge formulation can also generate many equiv-
alent solutions. To avoid multiplicity of solutions a similar approach can be used here as well. If a copy l
of the graph provides a cycle for some solution, then node l must be in this cycle and all other nodes must
have indices larger than l. Hence, all variables xl

ij such that i < l or j < l may be discarded from the model,
and constraints similar to (5a) can be added to set l as the lowest index of all nodes in the cycle:∑

j

xl
ij 6

∑
j

xl
lj ∀i ≥ l. (8)

Reduced extended edge formulation

On the same line of the elimination procedures for the variables yli proposed for the edge assignment
formulation (see section 4.1), one may also be able to eliminate variables xl

ij in the extended edge formulation.

If there is no cycle of size at most k containing both node l and an arc (i, j) with l ≤ i, j, then variable xl
ij

can be set to zero or simply eliminated from the model.
Summarizing, the application of the elimination procedures leads to the construction of a subgraph

Gl = (V l, Al) for each index l ∈ L, with V l, L and dlij as defined in section 4.1 and Al = {(i, j) ∈ A | i, j ∈
V l and dlli + 1 + dljl ≤ k}. With this notation one can write the reduced extended edge formulation as
follows.

maximize
∑
l∈L

∑
(i,j)∈Al

wijx
l
ij , (9a)

subject to
∑

j:(j,i)∈Al

xl
ji =

∑
j:(i,j)∈Al

xl
ij ∀i ∈ V l,∀l ∈ L, (9b)

∑
l∈L

∑
j:(i,j)∈Al

xl
ij 6 1 ∀i ∈

⋃
l∈L

V l, (9c)

∑
(i,j)∈Al

xl
ij 6 k ∀l ∈ L (9d)

∑
j:(i,j)∈Al

xl
ij 6

∑
j:(l,j)∈Al

xl
lj ∀i ∈ V l,∀l ∈ L (9e)

xl
ij ∈ {0, 1}. ∀(i, j) ∈ A,∀l ∈ L

5. Adaptation of each model to include problem variants

In the following text we discuss how formulations for the KEP can be adapted to three variants: the
problem with altruistic donors participation, the problem where compatible pairs are included into the pool,
and the problem with one or more patients having multiple donors associated.

Inclusion of altruistic donors

The inclusion of altruistic donors in KEP IP formulations is discussed in [14]. Exchanges involving
altruistic donors are labeled as domino paired chains (DPC) and the authors do only consider chains of
lengths 1 and 2 (when one or two incompatible pairs are involved in the exchange). The idea can however
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be generalized to chains of any size. The problem is again modeled as a weighted directed graph with
n + m nodes: V = {1, . . . , n + m}, n being the number of incompatible patient-donor pairs and m the
number of altruistic donors. Let us assume that nodes {1, . . . ,m} represent the altruistic donors, nodes
{m+ 1, . . . ,m+ n} represent the incompatible pairs, and that a dummy patient that is compatible with all
donors j ∈ {m + 1, . . . ,m + n} is associated to each altruistic donor. An example is given in Figure 7.

2 3

1

Figure 7: Inclusion of altruistic donor. For this example m = 1 and n = 2, node 1 is the altruistic donor,
dashed arcs (2, 1) and (3, 1) are the arcs to altruistic donor’s dummy patient.

Within this description let C(k, k′) define the set of all cycles in G with length at most k involving only
incompatible pairs, and of all cycles with length at most k′ with one altruistic donor. Assume also that
k′ ≤ k. Replacing C(k) by C(k, k′) the cycle formulation can be directly used to solve the problem.

For the other formulations the main impact is on the cardinality constraints that define the maximum
size of the cycle. They will now have to be separated in two sets, one for cycles including one altruistic
donor, and another for cycles that only include incompatible pairs.

For the edge formulation in section 3.1 the following additional set of constraints must be added:∑
16j6k′

xijij+1
≤ k′ − 1 ∀paths a (i1, i2, · · · , ik′ , ik′+1) with i1 6= ik′+1 (10)

where paths a is the set of paths of length k′ containing one altruistic donor.
Similarly, for the edge-assignment formulation in section 4.1 we define L = n+m. In addition to variables

yli, l, i = m+ 1, . . . , L for the incompatible pairs consider variables yll for l = 1, . . .m and yli for l = 1, . . . ,m,
i = m + 1, . . . , L. Then equation (3a) limiting the size of cycles is divided in the two following equations:

∑
i∈{l}∪{m+1,...,L}

yli 6 k′ ∀l ∈ 1, . . . ,m (11a)

∑
i≥m+1

yli 6 k ∀l ∈ m + 1, . . . , L (11b)

The same idea is applied to equations (7d), resulting in:

∑
(i,j)∈A:i,j∈{l}∪{m+1,...,L}

xl
ij 6 k′ ∀l ∈ 1, . . . ,m (12a)

∑
(i,j)∈A:i,j≥m+1

xl
ij 6 k ∀l ∈ m + 1, . . . , L (12b)

Inclusion of compatible pairs

Opening kidney exchange programs to compatible pairs will require slight modifications in the IP models
discussed in this paper. The set of vertices V will now represent both compatible an incompatible pairs,
VC ⊂ V denoting the subset of compatible pairs. For the cycle formulation, one will have to consider the
existence of loops ii of size 1 for all vertices of set VC . All the other formulations will have to consider that
it is now possible that patient i gets a kidney from donor i. Therefore variables xij must be extended to
include variables xii ∀i ∈ VC .
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Multiple donors

Within kidney exchange programs it is possible that instead of a single donor a patient has multiple
donors associated. If that is the case, and if the patient is selected for kidney transplantation, a donor that
would allow the cycle where corresponding patient appears to be created will be selected.

For this problem variant the IP models discussed in this paper do not suffer any structural changes and
are handled as follows: for all patients i with multiple donors, an arc (i, j) will exist if there is at least one
donor for i compatible with patient j. If the arcs are weighted and two or more donors in i are compatible
with patient j the largest weight associated to transplant from i to j is assigned to the arc between nodes i
and j. The associated IP models will be the same described in previous sections but a final straightforward
procedure will be required, if a multiple donor node appears in the optimal solution to determine which
donor within this node should be selected. If only one donor is compatible with the associated recipient,
he/she is selected. Otherwise for weighted arcs the donor associated with the maximum weight is selected;
for unweighted graphs if more than one donor is compatible with the patient, additional criteria are required
for the selection of a donor.

6. Linear relaxations and comparison of the bounds for different models

It is well known that the strength of the LP relaxation is one of the most important factors for a
formulation to be effective when a LP based branch-and-bound algorithm is used as a resolution method.
Let IP be some integer program and A and B be two different linear formulations of IP, which define LP
upper bounds (for the maximization problem) UB(A) and UB(B). We say that formulation A dominates
formulation B if UB(A) ≤ UB(B). In this section we present a comparison, from a theoretical point of
view, of the strength of the formulations described in the previous section. A first result on interaction of the
upper bounds of optimal solutions provided by linear relaxations of edge and cycle formulations (Theorem
1) was presented and proven in [12].

Theorem 1. The cycle formulation dominates the edge formulation.

As mentioned above the IP formulations with exponential number of variables or constraints sometimes
provide better bounds with linear relaxations than compact formulations. We now show that the cycle
formulation also dominates the extended edge formulation and that the extended edge formulation dominates
the edge-assignment formulation.

Assume that the extended edge formulation satisfies the following properties: i) L = |V |; ii) the non
eliminated variables are xl

ij such that i ≥ l or j ≥ l, and iii) the model contains constraints (8). The
following results remain true if the elimination procedures described in 4.2 are applied.

Theorem 2. The cycle formulation dominates the extended edge formulation.

Proof. For each l, let X l be the set of vectors xl = (xl
ij , (i, j) ∈ A) defined by constraints (7b), (7d),

(7e), (8) and
∑

j:(i,j)∈A xl
ij ≤ 1,∀i ∈ V . Each element of X l corresponds either to a cycle of cardinality

at most k, or to a set of disjoint cycles with a total number of edges not exceeding k. The extended edge
formulation can be rewritten as:

maximize
∑
l

∑
(i,j)∈A

wijx
l
ij (13a)

subject to
∑
l

∑
j:(i,j)∈A

xl
ij 6 1 ∀i ∈ V (13b)

xl ∈ X l (13c)

Now let U l be the set of vectors of X l that induce at most one cycle. U l can replace X l in the above
formulation, although to obtain an explicit formulation in variables xl

ij constraints preventing multiple cycles
would have to be added. Consider the following relaxation of the above model:
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maximize
∑
l

∑
(i,j)∈A

wijx
l
ij (14a)

subject to
∑
l

∑
j:(i,j)∈A

xl
ij 6 1 ∀i ∈ V (14b)

xl ∈ conv(U l) ∀l ∈ {1, ...L} (14c)

where conv(U l) denotes the convex hull of U l. The optimal value of the above model is less than or equal to
the value of the LP relaxation of the extended edge model. Indeed, the optimal value of problem (14a)-(14c)
is less than or equal to the optimal value of the linear relaxation of the problem (13a)-(13b) with xl ∈ U l.
But this value is obviously less than or equal to the value of the linear relaxation of problem (13a)-(13c)
because U l ⊆ X l.

One way to write a linear program equivalent to model (14a)-(14c) is to replace conv(U l) by its extreme
point representation. An extreme point of U l is either the null vector or the inducing vector pc of a cycle c in
G of cardinality at most k, containing node l and not containing nodes i < l. Let C(k) be the set of all cycles
of cardinality at most k and Cl be the set of cycles defined by U l, that is Cl = {c ∈ C(k) : l ∈ c ⊆ {l, . . . , n}}.
Now observe that {Cl, l ∈ 1, . . . , L} is a partition of C(k), hence xl ∈ conv(U l) if and only if there exist
nonnegative scalars uc, with c ∈ Cl, such that xl =

∑
c∈Cl ucp

c and
∑

c∈Cl uc ≤ 1. So xl ∈ conv(U l) for each
l ∈ {1, . . . , L} can be rewritten as:

xl
ij =

∑
c∈Cl:(i,j)∈c

uc ∀(i, j) ∈ A (15a)

∑
c∈Cl

uc ≤ 1 (15b)

uc ≥ 0 ∀c ∈ Cl (15c)

Let wc =
∑

(i,j)∈c wij for c ∈ C(k). Using (15a), (15b) and (15c), the model (14a)-(14c) can be written as
follows.

maximize
∑

c∈C(k)

wcuc (16a)

subject to
∑

c∈C(k) : i∈c

uc 6 1 ∀i ∈ V (16b)

∑
c∈Cl

uc ≤ 1 ∀l ∈ {1, ...L} (16c)

uc ≥ 0 ∀c ∈ Cl,l ∈ {1, ...L} (16d)

It is straightforward to see that constraints (16c) are always satisfied with respect to constraints (16b).
Thus problem (16a)-(16d) is the cycle formulation and from the previous discussion its optimal value is less
than or equal to the value of the LP relaxation of the extended edge model.
�

Theorem 3. The extended edge formulation dominates the edge-assignment formulation.

Proof: Let x̄l
ij , (i, j) ∈ A, l ∈ Λ = {1, . . . L} be an optimal solution of the linear relaxation of the extended

edge model (7a) – (7e). We build a feasible solution for the LP relaxation of the edge-assignment model
with same objective value.

Define variables x̄ij and ȳli as:
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x̄ij =
∑
l∈Λ

x̄l
ij ∀(i, j) ∈ A (17)

ȳli =
∑

j:(i,j)∈A

x̄l
ij ∀i ∈ V, i ≥ l (18)

The verification that the objective value is the same for both solutions uses (17) and it is straightforward.
Also, constraints (1b) and (1c) follow directly from (7b) and (7c) respectively, and (17). Similarly, (3a)
follows from (7d) and (18), and (4a) is obtained from summing both sides of (18) over l and both sides of
(17) over j. We show next that (4b) is satisfied.

By (17) and (18) ȳli + x̄ij =
∑

p:(i,p)∈A x̄l
ip +

∑
l∈Λ x̄l

ij . Now observe that the only common variable in the

two previous sums is x̄l
ij . Hence ȳli + x̄ij ≤

∑
l∈Λ

∑
p:(i,p)∈A x̄l

ip + x̄l
ij ≤ 1 + ȳli, the last inequality following

from (7c) and from (18) and the nonnegativity of the variables.
Finally, 0 ≤ ȳli ≤ 1 and 0 ≤ x̄ij ≤ 1 are a consequence of nonegativity of x̄l

ij and constraints (1c) and
(4a), already verified. Thus there always exists a feasible point for the edge-assignment formulation which
provides the same objective value as optimal solution for extended edge formulation. Hence we conclude
that the value of the LP relaxation of the edge-assignment formulation is greater than or equal to value of
the LP relaxation of the extended edge formulation. �

Next we show that the extended edge formulation and the edge formulation do not dominate each other.

Remark 1. The edge formulation does not dominate the extended edge formulation.

Proof: We present an example in which the value of the LP relaxation of the edge formulation is larger
than the one of the extended edge formulation. Let k = 3, the set of nodes (incompatible pairs) be
V = {1, 2, 3, 4, 5} and the set of arcs be A = {(1, 2), (1, 3), (1, 4), (2, 3), (3, 4), (4, 5), (5, 1)} – Figure 8. The
optimal value for this instance is three, given by cycle 1-4-5-1.

5

1

2

3

4

Figure 8: Example 1: an optimal solution for k = 3 is the cycle 1− 4− 5− 1.

Observe that all cycles contain vertex 1. Hence in the extended edge formulation xl
ij = 0 for all (i, j)

and l ≥ 2, and the optimal LP value is 3 (although there are several optimal non integer solutions). The
optimal LP solution for the edge formulation is x12 = x23 = x34 = x45 = x56 = 0.66(7) and x13 = x14 = 0,
with value 3.33(3). �

Remark 2. The extended edge formulation does not dominate the edge formulation.

Proof: Consider the example illustrated by Figure 9, where k = 3, the set of nodes isV = {1, 2, 3, 4} and
the set of arcs is A = {(1, 2), (1, 3), (2, 3), (3, 1), (3, 4), (4, 1), (4, 2)}. The optimal value for this instance is 3.

The optimal LP solution for the edge formulation is x12 = x23 = x34 = x41 = 0.66(7) and x13 = x31 =
0.33(3), with value 3.33(3). An optimal LP solution for the extended edge formulation is x1

12 = x1
23 = x1

34 =

14



1 2

4 3

Figure 9: Example 2: an optimal solution for k = 3 is the cycle 1− 2− 3− 1.

x1
41 = 0.75, x2

23 = x2
34 = x2

42 = 0.25 and xl
ij = 0 for all other variables, with value 3.75. �

Theorem 3 and Remark 2 imply that the edge-assignment formulation does not dominate the edge
formulation. It is an open question whether the edge formulation dominates the edge assignment formulation
but we strongly believe in this conjecture.

Despite the results presented in this section, compact formulations can turn out to be effective compu-
tationally because of their polynomial size, as will be shown in the computational study presented in the
next section.

7. Computational analysis

Computational experiments where carried out to compare the proposed and known formulations in
terms of time needed to find an optimal solution and of the LP gaps with respect to upper bounds of linear
relaxations of the models. CPU times and bounds were obtained with CPLEX 12.2 on a computer with
a Quad-Core Intel Xeon processor at 2.66 GHz, 16 Gb of RAM and running Mac OS X 10.6.6. Only one
thread was assigned to these experiments.

Two generators where used to create the instances for the computational study:

1) the instance generator described in [10], which creates random graphs based on probability of blood
type and of donor–patient compatibility. These instances will be referred to as blood-type test instances;

2) a random generator implemented by the authors of this paper used to generate graphs with three
different densities: low, medium and high. To do that different values are set for the probability of
having 1 (i.e. compatibility) on each position of the adjacency matrix of a graph. Low density graphs
are generated with probability 0.2. This value leads to an average density similar to the one obtained
for the blood-type test instances. The probability is set to 0.5 for medium density, and to 0.7 for high
density graphs.

The computational analysis was performed as follows. First, for cases with up to 50 nodes and k ranging
from 3 to 6 fifty instances of the same size were generated with both generators for the three density levels.
The performance of all formulations was tested for all instances. Besides that for this set of problems we
compared the average number of constraints and variables for different models and the percent of reduction
in size for the edge assignment and extended edge formulations when reduction procedures are implemented
(see sections 4.1, 4.2). Afterwards the formulations with general better performance on “small” instances
were selected for testing on larger problems (n > 50). Ten instances were generated for different large
problem sizes.

In the remainder of this document the following notation will be used to refer to each formulation:E –
edge formulation; C – cycle formulation; EA – reduced edge-assignment formulation; EE – reduced extended
edge formulation. Computational results are provided in tables 2-6 where:

- n is the number of nodes in the graph;

- k is the maximum length of the cycle;
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- tc and tp are the average CPU times (in seconds) to find all cycles and paths, respectively. Time
needed to carry out reduction procedures for the EA and the EE formulations was less than 1 second
for all small instances and less than 3 seconds for all large problems, and therefore it is not shown in
the tables;

- T is the average CPU time the solver CPLEX [37] needed to reach optimal solutions for the given set
of instances (50 instances for small problems, 10 for large problems), maximum CPU time was set to
1800.0 seconds for all formulations;

- [min,max] are the minimum and maximum CPU times taken to reach optimal solutions for a given
set (including preprocessing times tc and te for the cycle and edge formulations);

- #opt is the number of instances from each set which were solved to optimality within the time
limit (1800 seconds);

- gap is the average LP gap associated to a formulation: gap = UB−Opt
Opt ∗ 100%, where UB is the upper

bound provided by the linear relaxation of the formulation and Opt is the optimal value of the problem.

Values 0.00 in tables related to CPU time mean that the solver took less than 0.1 second to solve the
instances.

Since the number of paths associated with the edge formulation increases sharply for larger values of k
(k = 5 and k = 6), a bound of 3 million was set on the number of paths to be generated. The formulation
was not studied for instances where the number of paths exceeded that value. The same bound was used
for the number of cycles in the cycle formulation. With respect to this limitation in column #opt we show
in parenthesis the number of instances out of 50 that were studied, if necessary.

7.1. Small test instances

Test instances of 10, 20, 30, 40 and 50 nodes were created with the two generators and for the second
one for the three graph densities. Fifty instances of each size were considered. Table 1 shows the average
number of variables and constraints for problems of different size for the “low” and “high” density test
instances, as well as the percentage of reduction of the number of variables and constraints for the EA
and EE formulations after implementing reduction routines. Other computational results are presented in
tables 2–5.

Blood-type test instances

The results for these instances, presented in Table 2, clearly show the dominance of the C and EE
formulations, both in terms of effectiveness and efficiency: all instances are solved to optimality in general
with less CPU time than the E and EA formulations. The considerable increase in CPU time for the cycle
formulation when k = 6 and n = 40, 50 is caused by the time needed to enumerate all the cycles. As shown,
the smaller average gap is associated to the C formulation. However a shorter time that is required by the
EE formulation to reach optimality for larger test instances with larger values of k together with small gap
values is promising for handling larger scale instances.

In terms of size reduction, the introduction of ordering constraints and elimination procedures for EA
and EE resulted in significantly fewer variables and constraints. The number of constraints of the EE
formulation was reduced on average 65%. For k = 3 reduction was on average 80% and 56% for k = 6.
The number of variables for all instances was reduced by 91% on average. No results are provided for these
formulations before reduction as they were clearly worse.

Low density test instances

Results for randomly generated graphs with “low” density are presented in Table 3. Although the density
of these graphs is of the same order of magnitude of the previously reported ones, the E and EA formulations
performed very poorly for larger instances: in most cases the EA formulation exceeded the maximum CPU
time for all test instances of a given size (represented by (–) in Table 3); in several cases the E formulation
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also was not considered, either because the CPU time or the maximum number of paths were exceeded. The
additional difficulty raised up by these instances may be partially explained by the larger LP gaps obtained
for smaller problems. Again, the C and EE formulations dominate over the others, both formulations having
solved to optimality all instances.

The introduction of ordering constraints and elimination procedures for EA and EE resulted in a reduc-
tion of the number of constraints on average 48% for the EE formulation(from 76% for k = 3 to 30% for
k = 6). The number of variables was decreased on average by 86% for all instances of this group (Table 1).

Medium density test instances

The importance of developing compact formulations is reflected in the results obtained for “medium”
density test instances (see Table 4). In this case the EE formulation proved to be extremely efficient at solv-
ing larger problems. Furthermore, none of the compact formulations suffered the “curse of dimensionality”
that affects both the E and the C formulations, which exceeded either the maximum number of cycles/paths
or CPU times for larger instances.

It is also worth mentioning that although for the blood-type and low density instances most of the
CPU time associated to the C formulation was spent at generating cycles, in this case it was spent in the
optimization phase.

The reduction on the number of variables for the reduced EE was of 74% on average, while the reduction
on the number of constraints was now less significant: 11% on average.

High density test instances

Results for “high” density test instances are displayed in Table 5, corroborating and strengthening the
conclusions drawn with the previous results on the advantages of compact formulations. For this set of
instances only the EE was capable of solving to optimality the complete set. The EA, although performing
worse than the EE, still solved to optimality almost 95% of the instances considered.

The problems raised up by non-compact formulations, related to the exponential numbers of variables
associated to the C formulation and of constraints associated to the E formulation, become more evident
with these results: the number of cycles for the cycle formulation exceeds the allowed limit for all test
instances of size 50, for values of k = 4, 5, 6; the edge formulation was not run even for instances with 20
nodes and k = 5, 6.

LP gaps for all the formulations are equal to 0% for all tests and all values of k.
Here the reductions on the EE was only of 4% for the number of constraints and of 70% for the number

of variables (Table 1).

The results of the computational study for small instances show that in general CPU times increase with
increasing k and graph density for the cycle formulation; however they decrease with increasing density for
the other models and decrease with increasing k for compact formulations. Increasing times for the cycle
and edge formulations can be justified by the increasing number of cycles/variables and paths/constraints;
whereas decreasing times for other models could be explained by smaller gaps. Indeed gaps decrease for EE
and EA with k and density, while remaining approximately constant for C. This decrease of gaps may be
explained as follows: EE and EA are exact formulations if the problems are uncapacitated, that is, for k
sufficiently large there is always an LP solution which is optimal for the integer program. When k increases
the problems become closer to being uncapacitated so the LP solutions are closer to be integer and the LP
values closer to the integer optima. When the density increases the explanation is not so clear, probably
since more feasible cycles are available, it may be easier for LP solutions to have some entire feasible cycles
in their composition i.e. more variables equal to one.

7.2. Large scale test instances

This section reports the results obtained for the C and EE formulations, for problems ranging from 70
to 1000 pairs (see Table 6); 10 instances of each size were generated. These formulations were selected
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because they were the dominant for at least one set of the previous computational simulations: blood-type,
low, medium or high density graphs.

Again for blood-type and low density graphs the C formulation dominates over the EE for lower values
of k, being able to solve some problems with 1000 pairs for k = 3. However, as in the previous analysis
results for medium and high density graphs confirm the effectiveness of the compact formulation on dense
graphs with large values of k. With the cycle formulation it was possible to solve instances for k = 3 and
some instances for k = 4. This formulation was not capable of solving any instance with k > 4 within the
limit on number of cycles considered. For these values of k the EE was more efficient being able to solve to
optimality some instances.

To conclude, these results clearly indicate that appropriate methods have to be implemented if one wills
to use any of the formulations discussed in larger pools and for bigger size cycles.

8. Conclusions

This paper presents two new formulations for the Kidney Exchange Problem - edge assignment and
extended edge formulations – that have the advantage over other formulations proposed in the literature of
having polynomially bounded number of constraints and variables. A proof of dominance of some formula-
tions over others is also given and a discussion on the adaptability of each formulation to different problem
variants is provided. Finally, computational results that compare the previous and proposed formulations
in terms of time needed to find an optimal solution and of the gaps of linear relaxations upper bounds of
the models are provided.

Computational results show that the edge formulation has a bad performance and that it is not effective
at solving instances larger than 50 nodes. The non-compact cycle formulation is very efficient for low
density graphs with small values of k. However for larger values of k and especially if graphs are denser this
formulation becomes inefficient. In such cases compact formulations provide better results — in particular
the extended edge formulation — and are able to solve larger problems. Therefore, although we prove in this
paper that linear relaxations of the compact formulations do not provide better upper bounds for optimal
solutions than the cycle formulation, computational results reinforce the idea that compact formulations are
of practical relevance.

As future work an interesting direction is to use decomposition methods on the extended edge formulation,
in order to solve larger problems. The adaptation of these models to dynamic environments will also be the
subject of additional research.
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C E EA EE
n k #var #con #var #con #var #con rv% rc% #var #con rv% rc%

Low density test instances
10 3 3 2 17 55 22 53 70.6 76.4 7 16 96.4 86.1

4 5 4 17 62 25 65 66.3 71.2 12 24 93.9 80.0
5 7 4 17 63 27 73 63.3 67.7 16 28 91.8 75.9
6 8 5 17 55 28 75 62.0 66.7 18 30 90.5 74.2

20 3 28 15 77 1032 120 409 58.5 70.1 60 103 96.1 76.6
4 80 19 77 3297 157 646 45.6 52.7 142 179 90.9 59.4
5 217 19 77 10011 188 802 34.6 41.2 252 242 83.9 44.9
6 563 19 77 28381 207 880 28.0 35.4 347 280 77.8 36.4

30 3 82 28 174 5215 280 1318 56.2 68.5 169 242 96.8 74.8
4 336 30 174 26634 401 2354 37.4 43.6 498 484 90.5 49.6
5 1377 30 174 131770 496 2978 22.5 28.5 1008 674 80.8 29.8
6 5681 30 174 626695 539 3225 15.6 22.4 1412 761 73.0 20.7

40 3 187 40 311 17499 522 3264 53.9 65.5 369 461 97.0 72.6
4 1052 40 311 125158 790 6144 30.2 35.1 1276 998 89.8 40.6
5 6047 40 - > 3 ∗ 106 966 7585 14.6 19.8 2779 1350 77.7 19.6
6 35052 40 - > 3 ∗ 106 1029 8109 9.1 14.2 3719 1475 70.2 12.2

50 3 363 50 491 44579 851 6782 51.8 62.5 684 770 97.2 70.4
4 2596 50 - > 3 ∗ 106 1342 13059 24.0 27.8 2672 1752 89.1 32.6
5 19010 50 - > 3 ∗ 106 1601 15628 9.3 13.6 6140 2271 75.0 12.7
6 142190 50 - > 3 ∗ 106 1665 16332 5.7 9.6 7780 2399 68.3 7.7

High density test instances
10 3 100 10 62 1667 110 488 6.4 10.6 139 105 77.7 12.3

4 384 10 62 6856 114 506 2.8 7.1 211 114 66.1 5.3
5 1331 10 62 23732 114 507 2.7 7.0 228 114 63.1 5.1
6 4075 10 62 65993 114 507 2.7 7.0 229 114 63.0 5.1

20 3 875 20 266 39949 456 3771 4.2 6.1 1047 400 80.4 9.0
4 7851 20 266 446931 473 3926 0.7 2.2 1724 433 67.6 1.5
5 70343 20 - > 3 ∗ 106 473 3927 0.7 2.2 1871 434 64.8 1.5
6 616924 20 - > 3 ∗ 106 473 3928 0.7 2.2 1872 434 64.8 1.5

30 3 2949 30 606 221941 1026 12290 4.2 6.0 3341 870 81.6 9.3
4 41556 30 - > 3 ∗ 106 1066 12887 0.4 1.4 5731 950 68.5 1.0
5 600569 30 - > 3 ∗ 106 1066 12896 0.4 1.4 6251 951 65.6 0.9
6 > 3 ∗ 106 - - > 3 ∗ 106 1066 12896 0.4 1.4 6252 951 65.6 0.9

40 3 7164 40 1093 753123 1839 29130 3.9 5.4 7872 1532 82.0 8.8
4 138934 40 - > 3 ∗ 106 1908 30556 0.2 0.8 13683 1671 68.7 0.5
5 2239636 33 - > 3 ∗ 106 1908 30561 0.2 0.7 14923 1672 65.9 0.5
6 > 3 ∗ 106 - - > 3 ∗ 106 1908 30561 0.2 0.7 14924 1672 65.9 0.5

50 3 14157 50 1719 1911261 2883 56974 3.7 5.0 15272 2377 82.2 8.6
4 > 3 ∗ 106 - - > 3 ∗ 106 2992 59750 0.1 0.3 26817 2595 68.8 0.2
5 > 3 ∗ 106 - - > 3 ∗ 106 2992 59762 0.1 0.3 29272 2595 66.0 0.2
6 > 3 ∗ 106 - - > 3 ∗ 106 2992 59764 0.1 0.3 29273 2595 65.9 0.2

Table 1: Sizes of formulations and reduction for EA and EE. “Low” and “high” density test instances.
Notations:
- #var and #con are the average number of variables and constraints for a given n for different values of k;
- rv% and rc% are the average relative reductions on the number of variables and constraints in the EA
and EE formulations after implementing reduction procedures.
Dashes for the formulations C and E mean that no test instance out of 50 was considered due to the bound
on number of cycles or paths.
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C EE
n k tc T (min−max) #opt gap T (min−max) #opt gap

Blood-type test instances
70 3 0.0 0.0 [0.0, 0.0] 10 0.0 1.6 [0.2, 11.0] 10 1.8
100 0.1 0.0 [0.1, 0.1] 10 0.1 2.9 [0.8, 6.0] 10 0.8
200 0.8 0.3 [0.8, 1.6] 10 0.0 1220.5 [45.3, 1800.4] 4 0.4
300 3.3 1.5 [3.8, 5.6] 10 0.0 - - 0 -
500 23.1 10.5 [30.5, 43.8] 10 0.0 - - 0 -
800 141.4 147.9 [172.8, 697.8] 10 0.0 - - 0 -
900 223.4 397.8 [297.6, 999.4] 9(9) 0.0 - - 0 -
1000 343.1 478.6 [525.2, 1002.5] 7(7) 0.0 - - 0 -
70 4 0.4 0.1 [0.4, 0.7] 10 0.0 10.8 [1.0, 48.8] 10 0.5
100 1.9 0.4 [1.9, 3.0] 10 0.0 52.7 [5.8, 231.7] 10 0.0
200 41.7 25.0 [41.9, 108.5] 10 0.0 - - 0 0.0
70 5 10.2 2.1 [9.9, 14.6] 10 0.0 7 [1.6, 28.9] 10 0.0
100 66.8 13.2 [71.3, 102.7] 10 0.0 71.6 [10.9, 322.1] 10 0.0
70 6 369.5 25.0 [359.8, 445.6] 9(9) 0.0 3.9 [1.5, 11.3] 10 0.0
100 3254.5 19.4 [3273.9, 3273.9] 1(1) 0.0 101.9 [10.5, 727.6] 10 0.0

Low density test instances
70 3 0.0 0.1 [0.0, 0.1] 10 0.0 5.1 [0.6, 18.7] 10 0.0
100 0.1 0.2 [0.1, 1.0] 10 0.0 51.7 [10.6, 153.4] 10 0.0
300 3.4 11.0 [6.1, 87.2] 10 0.0 - - 0 -
500 25.6 604.5 [98.6, 1745.5] 7(7) 0.0 - - 0 -
70 4 0.4 0.8 [0.6, 3.2] 10 0.0 384.9 [36.9, 1492.9] 10 0.0
100 2.0 4.6 [2.8, 15.7] 10 0.0 - - 0 -
200 44.1 341.0 [133.4, 838.0] 8(8) 0.0 - - 0 -
70 5 9.6 9.9 [12.6, 46.4] 10 0.0 371.4 [19.6, 1616.7] 10 0.0
100 64.0 225.5 [110.0, 562.4] 10 0.0 - - 0 0.0
70 6 367.8 210.9 [428.6, 726.5] 10 0.0 89.5 [17.5, 298.0] 10 0.0
100 - - - 0 - 240.4 [166.0, 348.3] 4 0.0

Medium density test instances
70 3 0.0 0.4 [0.3, 0.4] 10 0.0 126.8 [18.1, 293.5] 10 0.0
100 0.1 3.8 [1.4, 14.0] 10 0.0 270.2 [242.2, 313.6] 5 0.0
300 4.6 279.1 [47.2, 835.1] 10 0.0 - - 0 -
400 13.2 204.3 [61.8, 406.0] 4(4) 0.0 - - 0 -
70 4 0.7 24.5 [2.7, 135.3] 10 0.0 138.1 [35.1, 418.8] 10 0.0
100 3.2 516.0 [16.5, 1620.0] 9(9) 0.0 459.8 [10.5, 697.3] 7 0.0
70 5 - - - 0 - 44.5 [15.6, 85.0] 10 0.0
100 - - - 0 - 359.5 [145.0, 543.8] 7 0.5∗

70 6 - - - 0 - 33.2 [17.7, 59.7] 10 0.0
100 - - - 0 - 176.9 [82.2, 317.9] 8 0.5∗

High density test instances
70 3 0.0 1.7 [0.7, 2.3] 10 0.0 161.1 [34.4, 563.8] 10 0.0
100 0.2 4.7 [0.8, 16.6] 10 0.0 505.3 [272.4, 908.1] 7 0.6
200 1.5 166.6 [9.6, 800.7] 10 0.0 - - 0 -
70 4 1.5 300.6 [11.1, 1587.8] 9 0.0 90.4 [29.3, 474.4] 10 0.0
100 - - - 0 - 418.6 [264.0, 602.5] 7 0.3∗

70 5 - - - 0 - 36.7 [2.2, 117.9] 10 0.0
100 - - - 0 - 401.8 [201.5, 840.2] 8 0.2
70 6 - - - 0 - 38.8 [14.7, 165.7] 10 0.0
100 - - - 0 - 247.2 [72.1, 922.8] 10 0.0

Table 6: Large instances.
∗ For the test instances which were not solved to optimality within the time limit with any formulation the gap

value for the best found lower bound is given by gap = UB−LB
LB

∗ 100%, where LB is the best found lower bound and

UB is the LP upper bound for the optimal value.
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