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Abstract 

We study, in the context of the Unit-Demand Vehicle Routing Problem, the relationship between 

the linear programming relaxation of a single-commodity flow model and the linear 

programming relaxation of a pure time-dependent formulation that is closely related to a 

formulation of the travelling salesman problem. We show that the time-dependent formulation 

implies a new large class of upper bounding and lower bounding flow constraints that are not 

implied by the linear programming of the single commodity flow model. Using the time-

dependent formulation we also show how to generate two new sets of inequalities in the space of 

the design variables: one set contains inequalities that are related to the well-known multistar 

constraints while the other contains inequalities that are related to double jump inequalities. 

Computational results show that the time dependent formulation can be used to easily solve 

instances with up to 80 nodes, when the vehicle capacity is reasonably small. 

Keywords: Vehicle Routing Problem, Time-dependent Formulations 

 

 

1.  Introduction 

The unit-demand Capacitated Vehicle Routing Problem (CVRP) is defined on a given directed graph G 

= (V,A) with a node set V = {1,…,n} and an arc set A with an integer weight (cost) ca associated with each 

arc a of A, as well as a given natural number Q. The problem seeks a minimum cost set of routes 

originating and terminating at the depot (we assume that node 1 is the depot) with each node in V\{1} 
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visited exactly once and each route containing at most Q nodes (plus the depot). The CVRP is closely 

related to delivery type problems and appears in a large number of practical situations concerning the 

distribution of commodities. The book by Toth and Vigo (2002) provides surveys on the problem, 

including variants and solution techniques. Papers by Araque et al. (1994), Lysgaard, Letchford and Eglese 

(2004) and Fukasawa et al. (2006) discuss the most successful algorithms for solving this problem as well 

as general demand cases. The Araque et al method is a cutting plane method that views the CVRP as an 

equivalent path partitioning problem (PPP) and uses routines for separating several facet defining 

inequalities of the PPP polytope, such as generalized subtour elimination constraints, and large, 

intermediate and small multistars that were identified and introduced in the paper by Araque, Hall and 

Magnanti (1990). The Lysgaard, Letchford and Eglese method is a cutting plane method using rather 

efficient routines for separating well-known inequalities for the CVRP such as generalized subtour 

elimination constraints, multistars, knapsack multistars, framed capacity inequalities, combs inequalities, 

and hypotours inequalities. The method described in Fukusawa et al. goes a step further by efficiently 

combining cutting planes with column generation. Several authors have studied the polyhedral structure of 

the CVRP, among them, Laporte and Nobert (1984), Campos, Corberan and Mota (1991), Araque, Hall and 

Magnanti (1990), Araque (1990), Augerat (1995) and Letchford, Eglese and Lysgaard (2002). The paper by 

Letchford and Salazar-Gonzalez (2006) provides a recent comparison of the linear programming relaxation 

of several formulations presented in the literature and the recent paper by Godinho, Gouveia and Magnanti 

(2007) presents and compares the linear programming relaxation of several so-called multicommodity flow 

time-dependent formulations. 

In this paper we study the relationship between the linear programming relaxation of a pure time-

dependent formulation (that can be seen as modified version of the well-known Picard and Queyranne 

(1978) formulation for the TSP) and the linear programming relaxation of a well known single-commodity 

flow model due to Gavish and Graves (1978). In particular, we show that the time-dependent formulation 

implies a new large class of upper bounding and lower bounding flow constraints that are not implied by 

the linear programming of the single commodity flow model. By using some well-known techniques for 

generating inequalities in the space of the design variables from the linear programming feasible set of 

single commodity flow models (see, for instance, Gouveia (1995) and, Letchford and Salazar-Gonzalez 

(2006)) we show how to generate new inequalities that are related to the well-known multistar constraints 

(see Araque, Hall and Magnanti (1990)). We also show how to generate a conditional version of the double 

jump inequalities proposed in Godinho, Gouveia and Magnanti (2007). Finally, we present some 

computational results showing that an enhanced version of the time dependent formulation can be used to 

easily solve instances with up to 80 nodes, when Q is reasonably small.  

In Section 2 we review a well-known single commodity flow formulation for the CVRP and in Section 

3 we present the modified Picard and Queyranne formulation together with a set of valid inequalities in the 

space of the time-dependent variables that improve the linear programming relaxation of the modified 
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formulation. In Section 4 we state a result relating the linear programming relaxations of these two 

formulations. Section 5 describes some new upper bound inequalities and new lower bound flow 

inequalities in the space of the design and flow variables and Section 6 describes new conditional double-

jump inequalities and multistar-like inequalities that are defined in the space of the design variables. 

Section 7 presents computational results comparing the linear programming bounds of the formulations 

discussed in the paper. 

2. A Generic Formulation and the Single-Commodity Formulation for the CVRP 

Throughout this paper, for any formulation P, F(P) denotes its set of feasible solutions, v(P) the value of 

an optimal solution, and PL its linear programming relaxation. If g is any quantity defined on the arcs (i,j), 

we let ( , )g A B  denote iji A j B
g

∈ ∈∑ ∑ . When A = B, we will simply use the notation ( )g A  and when A (or 

B) is a single node set, for instance A = {i}, we will use ( , )g i B . In particular, we will use this notation 

when referring to binary arc variables ijx associated with arc inclusion.  

Consider the following generic formulation for the CVRP: 

( , )

        ( , )

                  {( , ) :  1         }

ij ij

i j A

ij

ij

minimize c x

subject to x Assign i j A

i j x does not contain routes with more than Q nodes

∈

∈ ∈

=

∑
 

with Assign denoting the feasible set of the well-known assignment relaxation arising in formulations for 

the problem: 

1   \ {1}

1   \ {1}

{0,1}     ( , ) .

( , )

( , )

ij

j V

i V

x i j A

x V j

x i V

= ∈

= ∈

∈ ∈

    

There are several ways to model the implicit route constraints. We obtain probably the most well-

known formulation for the CVRP by modelling them as the standard generalized subtour elimination 

constraints ( ) | | | | /x S S S Q≤ −     for all S ⊆ V\{1} (see, for instance, Araque, Hall and Magnanti (1990)) 

that limit the size of each route by guaranteeing a sufficient number of arcs incoming into each subset of 

nodes and so ensuring that the nodes in the subset can be split into feasible routes. Letchford and Salazar-

Gonzalez (2006) summarize and discuss several variants of these inequalities from the literature. 

An alternative modelling approach is to use extra variables to express the implicit constraints (see, for 

instance, Letchford and Salazar-Gonzalez (2006) and Godinho, Gouveia and Magnanti (2007)). Probably, 

the most well-known such formulation for the CVRP is the following single commodity flow formulation 
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(see Gavish and Graves (1978)) that uses additional flow variables  ijf  indicating the amount of flow on arc 

(i,j) (assuming that the depot, node 1, sends one unit of flow to every other node):    

( , )

     

                  ( , ) ( , \{1}) 1       \{1}

                  (1, \{1} 1  

                   ( 1)                      ( , ) ,  , 1

    

ij ij

i j A

ij

ij ij

minimize c x

subject to x Assign

f V j f j V j V

f V n

f Q x i j A i j

∈

∈

− = ∈

= −

≤ − ∈ ≠

∑

1 1                                           \{1}

                                                  ( , ) ,  1

                  0                                   ( , ) .

j j

ij ij

ij

f Qx j V

f x i j A j

f i j A

≤ ∈

≥ ∈ ≠

≥ ∈

 

We assume the flow on each arc entering or leaving the depot node is equal to zero (that is 1 0jf =  for 

all j ∈ V\{1}). The linking constraints 1 1 j jf Qx≤  guarantee that the flow on each arc leaving the root does 

not exceed Q. This restriction, together with the flow conservation constraints and the remaining linking 

constraints, guarantees that each route cannot contain more than Q client nodes. Gouveia (1995) has shown 

that the projection of the feasible set of the linear programming relaxation of the single commodity 

formulation is completely described by the equalities in Assign, plus nonnegativity constraints imposed 

upon the 
ij
x  variables and the so-called multistar constraints (see Section 6) that are known to be facet 

defining for the CVRP polytope (see Araque, Hall and Magnanti (1990)). Araque, Hall and Magnanti 

(1990) and Letchford (2002) have also proposed variations of these constraints. Letchford and Salazar-

Gonzalez (2005) discuss similar classes of inequalities that result from a similar projection result for 

several other variants of the CVRP. In Section 6 we describe variations of these constraints which, as far as 

we know, appear to be new. 

3. The Modified Picard and Queyranne Formulation 

The well-known Picard and Queyranne formulation for the TSP (see Picard and Queyranne (1978)) is 

easily modified for the CVRP (as far as we know, no one has previously given explicit reference to this 

formulation for the CVRP). As in the Picard and Queyranne formulation for the TSP, we use an expanded 

layered graph. Two copies of node 1 serve as the source and the destination nodes. A node j
h
 (h=1,…,Q), 

represents a copy of node j (j = 2,…,n) in layer h. The network contains: i) arcs from the source version of 

node 1 to any node in the levels 1 to Q, ii) arcs from nodes in level h to nodes in level h+1 (h = 1,…,Q-1), 

but we do not allow arcs linking copies of the same original node and, iii) arcs from nodes in level Q to the 

destination version of node 1. We will also say that an arc directed into a node 1 at level h, has position h). 
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As an illustration, Figure 3.1 shows the layered graph representation of the feasible CVRP solution 

depicted also in Figure 3.1, an instance with n=7 and Q=3 (labels associated with the arcs correspond to the 

value of the flow in the arc, that is the number of nodes still to be visited in the route). 
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Figure 3.1 –  A feasible solution for a CVRP instance with n = 7 and Q = 3 and the corresponding layered 

graph. 

 

The main difference between this network and the layered graph construct for the TSP is that now we i) 

allow arcs leaving the source node 1 to nodes in layers h = 2,…,Q (to allow for vehicle routes with fewer 

than Q nodes), and ii) allow more than one path linking the source and destination versions of node 1 (to 

represent several vehicle routes). We obtain the Modified Picard and Queyranne formulation, MPQ, by 

replacing the implicit part of the generic formulation with the following system: 
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1 2

1

\{1}

1

\{1}

1

1

1 1

1,...,

2,..,

             2,...,  

       2,...,     2,..., 1

             2,...,

           2,....,

          

j ji

i V

h h

ij ji

i V i V

Q Q

ij j

i V

h

j j

h Q

h

ij ij

h Q

z z j n

z z j n and h Q

z z j n

x z j n

x z

∈

+

∈ ∈

+

∈

=

=

= =

= = = −

= =

= =

=

∑

∑ ∑

∑

∑

∑

{ }

1

1 1

,   2,....,

                 2,...,

0,1               (1, )     1,....,

                               ( , )  ,  ,  1    2,...,

                               ( ,1

Q

j j

h

ij

i j n

x z j n

z j A and h Q

or i j A i j and h Q

or i

+

=

= =

∈ ∈ =

∈ ≠ =

)    = 1.  A and h Q∈ +

 

In this model, the variable h

ijz  indicates that arc (i,j) is in a path that contains Q-h+1 nodes after the arc 

(including node j, but not node 1). The equality constraints imposed upon the z variables simply define a 

network flow system in this layered graph whose solution (in integer variables) are paths (corresponding to 

routes in the original graph) from the source to the destination versions of node 1. These constraints permit 

each path to visit several copies of the same original node. However, in the overall problem, the constraints 

linking the h

ijz  with the 
ij
x  variables and the assignment constraints in the 

ij
x variables rule out that 

situation. Note that the equality constraints relating the 
ij
x  and h

ijz  variables permit us to rewrite the MPQ 

formulation with only the h

ijz  variables. 

The existence of these two models, suggest three questions: 

Q1. What is the relationship between the linear programming relaxation of the two formulations, SCF 

and MPQ? 

In Section 4 we will show that the linear programming relaxation of MPQ is at least as good as the 

linear programming relaxation of SCF. This result suggests two other questions: 

Q2. What are the improvements, if any, of the linear programming bounds of MPQ over the linear 

programming bounds of SCF? 

Q3. What inequalities are implied by the linear programming relaxation of MPQ that are not redundant 

in the linear programming relaxation of SCF? 

Section 9 gives some computational results showing what we can gain by using the MPQ model instead 

of the SCF model when solving CVRP instances and Sections 5 and 6 give a partial answer to question Q3. 
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Before closing this section we introduce one set of inequalities in the space of the h

ijz  variables that 

considerably improves the linear programming bound of the MPQ formulation. The new inequalities state 

that if arc (j,i) is in position h+1, then some arc other than (i,j) is in position h 

1

;

       ,   2,...,     2,..., 1h h

kj ji

k V k i

z z for all i j n and h Q+

∈ ≠

≥ = = −∑ .    (3.1) 

As far as we know, these inequalities were first proposed in Gouveia (1999) for tree problems and were 

later on used as valid inequalities to enhance hop-indexed formulations for the capacitated minimum 

spanning tree problem (see Gouveia and Martins (1999,2000). Recently, Cordeau, Costa and Laporte 

(2006) have used use a formulation involving inequalities (3.1) for a variation of the Steiner Tree Problem 

with revenues, budget and hop constraints. 

Note that by adding h

ijz  to each side of this inequality, by using the constraints from MPQ and canceling 

equal terms, we can rewrite these constraints in symmetrical form (as compared to (3.1)) as follows: 

1

\{1};

       ,   2,...,    2,..., 1h h

jk ij

k V k i

z z for all i j n and h Q+

∈ ≠

≥ = = −∑ . 

We let MPQ* denote the MPQ model augmented with inequalities (3.1) and we have 

Proposition 3.1: v(MPQ*L) ≥ v(MPQL). 

As noted before, it is quite easy to find instances for which the previous inequality is strict. Clearly, 

questions similar to questions Q2 and Q3 also apply for the MPQ* model in relation with the models MPQ 

and SCF.  

4. Relating the linear programming relaxations of MPQ and SCF 

For the next result, we need to add to MPQ the following definitional constraints that link the h

ijz  

variables with the flow variables  ijf  of the SCF model. This addition does not alter its linear programming 

bound (for simplicity, we will use the same designation MPQ to refer to this augmented model) 

1 1

1,...,

( 1)         2,....,h

j j

h Q

f Q h z j n
=

= − + =∑        (4.1) 

2,..,

 ( 1)       ( , ) ;  , 1h

ij ij

h Q

f Q h z i j A i j
=

= − + ∈ ≠∑      (4.2) 

1

1 1 0                             2,..., .Q

j jf z j n+= =       (4.3) 
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The following result and proof are a simple adaptation of a similar result and proof given in Gouveia 

and Voss (1995) for the Traveling Salesman Problem (for simplicity we skip the proof and refer the reader 

to Godinho et al. (2007)).  

Proposition 4.1:   The projection of F(MPQL) into the space of the variables 
ij
x  and 

ij
f  is 

contained in F(SCFL). 

Corollary: v(MPQL) ≥ v(SCFL). 

5. Some Inequalities Implied by MPQ (and MPQ*) in the xij and fij Space  

As noted in Section 4 the linear programming relaxation of the MPQ formulation is at least as strong as 

the linear programming relaxation of the SCF formulation. Some computational results in Section 9 show 

that, in general, the linear programming relaxation of MPQ strictly dominates the linear programming 

relaxation of SCF (see also Figure 5.1 to follow). In this section we describe several inequalities in the 

space of the variables 
ij
x  and ijf  that are implied by the linear programming relaxation of MPQ and that 

are not implied by the linear programming relaxation of the SCF formulation. As motivating one such set 

of constraints, we note that we could have defined a valid version of the SCF model with a weaker linear 

programming relaxation by using the weaker linking constraints: 

         ( , ) ,

 0              ( , ) .

ij ij

ij

f Qx i j A

f i j A

≤ ∈

≥ ∈
 

The stronger set included earlier in the SCF formulation models the fact that the flow in any “internal” 

arc with 1ijx =  cannot exceed Q-1 (since the first node in any route absorbs one unit of flow) and cannot 

be less than 1 (since only the arc returning to the depot would have flow equal to zero). We can generalize 

this concept by introducing a variation of the stronger constraints that reflects the maximum or minimum 

flow in arcs in positions two away (after or before) node 1. The validity of the following constraints is easy 

to establish: 

1

1

 ( 2)  +       ( , ) ,  , 1

2                 ( , ) ,  1.

ij ij i

ij ij j

f Q x x i j A i j

f x x i j A j

≤ − ∈ ≠

≥ − ∈ ≠
      (5.1a/b) 

Note that these constraints do not imply the previous set. However, we can add them to the single 

commodity flow model to tighten the linear programming relaxation. Figure 5.1 depicts a feasible solution 

for the linear programming relaxation of SCF for an instance with n = 6 and Q = 3. On the left, the labels 

associated with the arcs correspond to values (those greater than zero) of the 
ij
x  variables and on the right 
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the labels associated with the arcs correspond to values (again those greater than zero) of the flow 

variables.  

 

 

Figure 5.1 – A feasible solution for the SCFL model.  

It is easy to see that the solution shown in Figure 5.1 violates the constraint 
26 26 612f x x≥ − . Note that 

increasing the flow in this arc would violate the upper bound constraint 26 26 12 f x x≤ + . 

There are two ways we would like to generalize the constraints (5.1a/b): (i) bound the flow in arcs that 

are more than 2 arcs away from the depot, and (ii) consider constraints for arc sets instead of a single arc 

(i,j).  

5.1 Generalizing Inequalities (5.1a/b) for Arcs That Are More Than 2 Arcs Away From the Depot 

In any feasible solution to the problem, we will say that an arc is at least k arcs away from the depot if it 

is the (k+1)
st
 or later arc on a path (route) from the depot.  The constraints (5.1a/b) bound the flow on arcs 

that are at least two arcs away from the depot. To obtain analogous bounds for arcs that are at least k arcs 

away from the depot, for simplicity, we consider only a generalization of the upper bound constraint (5.1a). 

We begin by writing a constraint of the form 

 ( 1 )  + ( , )          ( , ) ,  , 1, 1,..., 3ij ijf Q k x Exp x k i j A i j k Q≤ − − ∈ ≠ = −  

2

4 6

3

5/6

1/2

1/6

1/6

5/6

5/6

1/6

1

5

1/6 1/2

1

1

1/2

2

4 6

3

5/3

1/2

1/2

1/2

1

5/2

1/6

1

5

1

3/2
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with ( , )Exp x k  denoting a linear term in the x variables that depends on k and should equal p (p < k) if the 

path from node 1 to node i contains k-p+1 arcs. To motivate this expression, we consider a set of 

inequalities for k = 2, but involving quadratic terms. 

1 1

\{1, }

 ( 3)  + 2  + ( )      ( , ) ,  , 1ij ij i k ki

k V i

f Q x x x x i j A i j
∈

≤ − × ∈ ≠∑ . 

To show that this inequality is valid, we note the following: i) if the path from node 1 to node i contains 

three or more arcs, then the flow in arc (i,j) is at most Q-3, the two terms on the right are zero, and the 

inequality is valid; ii) if arc (1,i) is in the solution, then the middle term is equal to 2, the right most term is 

equal to zero and again, the inequality is valid; iii) if the path from node 1 to node i contains two arcs, then 

one of the terms 1k kix x×  equals 1, the middle term equals zero, and since the flow on arc (i,j) is at most   

Q-2, the inequality is valid. Using the fact that 1 1k ki kx x x× ≤ and 1k ki kix x x× ≤ for each k in V\{1,i}, we can 

generate the following set of linear inequalities from the previous nonlinear one 

1 ( 3)  + 2  +  (1, ) ( \ ( {1}), )     ( , ) ,  , 1, \{1, }ij ij if Q x x x P x V P i i j A i j P V i≤ − + ∪ ∈ ≠ ⊆ .  (5.2a) 

Notice that this inequality captures condition iii) from the previous argument since for any node set P, 

the node in the middle of the 2-path joining node 1 to node i either is in the set P (and then, the second term 

from the right is equal to 1) or is not in P (and then, the first term from the right equals 1). It is easy to see 

how to strengthen the inequalities (5.2a) by excluding node j from P. Examples can be found showing that 

these inequalities are not implied by the linear programming relaxation of MPQ. Later, we show that the 

linear programming relaxation of MPQ* does imply these inequalities.  

The previous inequalities suggest the following more general class of inequalities that are based on the 

concept of jump-sets of arcs (see Dahl (1999) and Godinho, Gouveia and Magnanti (2007)). Let S0, 

S1,...,Sk+1 be node-disjoint nonempty sets defining a partition of the node set V with S0 = {1} and Sk+1 = 

{i}. Consider the inequalities 

-1 1

0 2

0 1 0 1

 ( 1 )  + ( 1) ( , )   ( , ) , 1,..., - 2 

                                  ( ,..., )    {1}  { }.

k k

ij ij p q

p q p

k k

f Q k x q p x S S i j A k Q

and S S of V with S and S i

+

= = +

+ +

≤ − − − − ∈ =

= =

∑ ∑
   (5.3a) 

Note that when k = 1 and 2, we obtain the inequalities (5.1a) and (5.2a) described previously. Note that 

if a variable corresponds to an arc “jumping” over t intermediate sets Sj (i.e., (q - p – 1) = t), then its 

coefficient equals t. It is not difficult to check that the term 

0,..., -1 2,..., 1

( 1) ( , ) p q

p k q p k

q p x S S
= = + +

− −∑ ∑  
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appearing in the inequalities satisfies the conditions previously given for the generic term ( , )Exp x k . In the 

next section, we show how to generalize inequalities (5.3a) for arc sets and we will also discuss similar 

lower bounding inequalities 

5.2 Generalizing constraints (5.3a) for Arc Sets 

In this subsection we will analyze constraints of the form 

( ', ) ( 1 ) ( ', )  + ??      , ' \{1}, '           f S S Q k x S S S S V S S φ≤ − − ⊂ ∩ =  (5.4a) 

that are stronger than the constraints obtained by adding (5.3a) for all the arcs in a cut [S’,S]. For 

simplicity, we start with the simplest case, the following generalization of inequality (5.1a).  

( ', ) ( 2) ( ', )  + (1, ')    , ' \{1}, ' .f S S Q x S S x S S S V S S φ≤ − ⊂ ∩ =     (5.5a) 

The validity of these constraints is easy to establish. The key item in constraints (5.5a) is the coefficient 

1 of the righthand term for every pair of sets S and S’. These constraints are stronger than the ones obtained 

by adding |S|*|S’| corresponding constraints (5.1a) and this fact will prove to be crucial when, in the next 

subsection, we use “projection” techniques to generate new inequalities in the space of the variables
ij
x . 

It is not difficult to see how to generalize any of the constraints (5.3a) in a similar way to 

-1 1

0 2

0 1 0 1

( ', ) ( 1 ) ( ', )  + ( 1) ( , )  , ' \{1}, ' ,

                             1,..., 2   ( ,..., )    {1}  '.

k k

p q

p q p

k k

f S S Q k x S S q p x S S S S V S S

k Q and partitions S S of V with S and S S

φ
+

= = +

+ +

≤ − − − − ⊂ ∩ =

= − = =

∑ ∑
 (5.6a) 

Again, we note that the coefficients of the variables within the righthand side summation are 

independent of S and S’. Thus, for a given k, S and S’, the generalized inequality is stronger than the 

constraint obtained by adding |S|*|S’|| single node set constraints (5.3a).  

In a similar way we write the following set of lower bounding inequalities:  

1 1

0 2

0 1 0 1

( , ')  ( 1) ( , ')  ( 1) ( , ) , ' \{1}, ' ,

                             1,..., 2   ( ,..., )    '   {1}.

k k

p q

p q p

k k

f S S k x S S q p x S S S S V S S

k Q and partitions S S of V with S S and S

φ
− +

= = +

+ +

≥ + − − − ⊂ ∩ =

= − = =

∑ ∑
(5.6b) 

The following result (with a proof given in the Appendix) shows that a special case of (5.6a/b) is 

implied by the linear programming relaxation of MPQ. It is still open whether all inequalities (5.6a/b) are 

implied by the linear programming relaxation of MPQ. 
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Proposition 5.1 The inequalities (5.6a) (resp. (5.6b)) are implied by the linear programming relaxation 

of MPQ for all values Q if one of the following conditions are satisfied: 

i) k = 1 

ii) k = 2,…,Q-2 and S ⊆  S1 ∪ S2 (resp. S ⊆  Sk-1 ∪ Sk). 

 

To conclude this section, we show that if we make some assumptions on the partitions involved in the 

different inequalities, we can obtain inequalities that are stronger versions of inequalities that result from 

adding either several inequalities (5.6a) or (5.6b). Again, these inequalities might prove to be relevant when 

using projection techniques such as the ones described in Section 6 for obtaining inequalities defined in the 

space of the ijx  variables that are implied by the linear programming relaxation of MPQ. To motivate this 

set of constraints consider, the following three constraints (5.6a) for k = 4, 3 and 2, respectively, and for a 

specific family of pairwise disjoint node sets S1, S2, S3, S4 and S: 

2 4

0 2

1 3

0 2

( 4, ) ( 4) ( 4, )  + ( 1) ( , )

( 3, ) ( 3) ( 3, )  + ( 1) ( , )

( 2, ) ( 2) ( 2, )  + (1, 2). 

p q

p q p

p q

p q p

f S S Q x S S q p x A A

f S S Q x S S q p x B B

f S S Q x S S x S

= = +

= = +

≤ − − −

≤ − − −

≤ −

∑ ∑

∑ ∑      

In the first constraint, the node sets in the partition are A0 = {1}, A1 = S1 ∪ S, A2 = S2, A3 = S3 and A4 

= S4.  In the second constraint, the node sets in the partition are B0 = {1}, B1 = S1 ∪ S, B2 = S2 and B3 = 

S3.  Note that the sets S1, S2, S3 and S4 appear in increasing order in these three partitions.  In such a case, 

it is possible to derive the inequality 

2 4

0 2

( 4, ) + ( 3, ) ( 2, ) ( 4) ( 4, ) ( 3) ( 3, )  ( 2) ( 2, ) 

                                                  + ( 1) ( , ).p q

p q p

f S S f S S f S S Q x S S Q x S S Q x S S

q p x A A
= = +

+ ≤ − + − + −

− −∑ ∑
 

This inequality is stronger than adding the previous three inequalities since it does not include the 

rightmost terms of the second and third inequalities. This inequality is easily generalized yielding the 

following inequalities:  

1 1 -1 1

2 2 0 2

1 1

0 1 1

( , ) ( ) ( , )  + ( 1) ( , )   2,..., 2 

       ( ,..., , )  \{1}  

     {1},    ( 2,..., 1).

k k k k

u u p q

u u p q p

k

u u

f S S Q u x S S q p x A A k Q

and partitions S S S of V such that

A A S S and A S u k

+ + +

= = = = +

+

≤ − − − = −

= = ∪ = = +

∑ ∑ ∑ ∑
  (5.7a) 

In a similar manner we can write lower bounding inequalities as follows: 
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1 1 -1 1

2 2 0 2

1 1

0 1 1 1

( , )  ( , )  ( 1) ( , )   1,..., 2

       ( ,..., , )     

     ,  ( 1,..., 1),  ,  {1}.

k k k k

u u p q

u u p q p

k

k u k u k k

f S S u x S S q p x A A k Q

and partitions S S S of V such that

A S A S u k A S S and A

+ + +

= = = = +

+

+ − +

≥ − − − = −

= = = − = ∪ =

∑ ∑ ∑ ∑
   (5.7b) 

The following result (with a proof given in the Appendix) shows that these inequalities are implied by 

the linear programming relaxation of MPQ. 

Proposition 5.2 The inequalities (5.7a/b) are implied by the linear programming relaxation of MPQ. 

5.3 Some Inequalities Implied by MPQ* in the xij and fij Space 

Some (and perhaps) all the inequalities derived in the previous subsections are implied by the linear 

programming relaxation of the stronger model MPQ. Finding inequalities that in the space of the variables 

ij
x  and ijf  that are implied by the linear programming relaxation of MPQ* but are not implied by the 

linear programming relaxation of MPQ is also of interest but does not seem to be an easy task. Here we 

produce one such set of inequalities. In Subsection 5.1 we have mentioned the following slightly stronger 

form of inequalities (5.2a): 

1 ( 3)  + 2  +  (1, ) ( \ ( {1, }), )     ( , ) ,  , 1, \{1, , }.ij ij if Q x x x P x V P j i i j A i j P V i j≤ − + ∪ ∈ ≠ ⊆   (5.8a) 

As noted before, these inequalities differ from (5.2a) by considering more slightly restricted index sets 

in the last term and are not implied by the linear programming relaxation of MPQ. We can also write a 

similar and slightly stronger form of the corresponding lower bounding inequalities (5.2b) as follows: 

1 3   2  ( ,1) ( , \ ( {1, }))   ( , ) ,  , 1, \{1, , }.ij ij jf x x x P x j V P i i j A i j P V i j≥ − − − ∪ ∈ ≠ ⊆   (5.8b) 

Proposition 5.3: The inequalities (5.8a/b) are implied by the linear programming relaxation of the 

MPQ* model. 

It does not seem easy to generalize (5.8a) in the same way that we generalized constraints (5.2a) for 

sets of nodes (see (5.6a) for k = 2). It is also not clear how to use the constraints (3.1) to obtain stronger 

versions of the upper and lower bounding constraints for arcs that are more than 3 arcs away from the 

depot.  

6. Some Inequalities implied by MPQ in the xij space 

In this section we describe several inequalities in the space of the variables 
ij
x  that are implied by the 

linear programming relaxation of the MPQ model. Although à priori we do not know the structure of such 
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inequalities, fortunately, we can use the generalized flow bounding constraints of the single commodity 

flow model derived in the previous section to suggest these inequalities. These new inequalities will be 

obtained either in a trivial way (see Subsection 6.1) or by using projection techniques similar to the ones 

described in Gouveia (1995) and Letchford and Salazar-Gonzalez (2006) which will be described in 

Subsection 6.2. Note that the way these inequalities are obtained shows that they are also implied by the 

linear programming relaxation of the SCF model augmented with (5.6a/b) and/or (5.7a/b) in the space of 

the 
ij
x  variables. We will also show that with exception to a few cases, we can obtain stronger inequalities 

by finding direct derivations from MPQ. We note, however, that the new flow bounding inequalities 

together with the known projection techniques have suggested the nature of some of the inequalities 

implied by the linear programming relaxation of MPQ. 

6.1 Conditional Double-Jump Inequalities 

The first set of inequalities is quite simple. Adding the upper bound constraint (5.6a) and the lower 

bound constraint (5.6b) for k = 1 and any arc cut set [S’,S] and canceling equal terms, we obtain the 

constraints 

0 ( 4) ( ', )  + (1, ')+ ( ,1)    , ' \{1}, 'Q x S S x S x S S S V S S φ≤ − ⊆ ∩ =    (6.1) 

which apparently are uninteresting since for Q > 3 they are redundant. However, when Q = 3 we obtain the 

intuitive inequality ( ', ) (1, ') ( ,1)x S S x S x S≤ + . Note that if we set S’ = {2} and S = {6}, the solution shown 

in Figure 5.1 violates the resulting inequality (6.1). We can obtain more complicated inequalities by 

combining other general lower and upper bounding inequalities from the entire class (5.6a/b). However, we 

believe that, in general, those inequalities are easily dominated by other inequalities implied by the linear 

programming relaxation of MPQ. As an example, if we combine (5.6a) for k = 2 with (5.6b) for k = 1 to 

eliminate the term ( ', )f S S , we obtain, after rearranging, 

 
0 ( 5) ( ', )  + 2 (1, ')+ (1, ) ( \ ( {1}), ')+ ( ,1) 

                                               , ' \{1}, ' {}, \{1 '}.

Q x S S x S x P x V P S x S

S S V S S P V S

≤ − + ∪

⊆ ∩ = ⊆ ∪
  (6.2) 

When Q = 4, the inequality (6.2) becomes  

 
( ', ) 2 (1, ')+ (1, ) ( \ ( {1}), ')+ ( ,1) 

                                               , ' \{1}, ' {}, \{1 '}.

x S S x S x P x V P S x S

S S V S S P V S

≤ + ∪

⊆ ∩ = ⊆ ∪
  (6.3) 

However, it is easy to see how to strengthen this inequality by replacing the coefficient of “2” of the 

term (1, ')x S  with a “1”. These resulting inequalities belong to a more general class of inequalities that are 

implied by the linear programming of MPQ but, besides a few special cases (for example, the inequalities 
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( ', ) (1, ') ( ,1)x S S x S x S≤ +  for Q = 3), do not appear to be implied by the linear programming relaxation of 

SCF augmented by inequalities (5.6a/b) and/or (5.7a/b).  

These inequalities are similar to the double-jump inequalities introduced in Godinho, Gouveia and 

Magnanti (2007). To motivate the new inequalities, assume that an arc (i,j) (with i,j ≠ 1) is in the solution in 

one of the routes. Then, for any position p (2 < p < Q), either the path from node 1 to i has length less or 

equal than p-1, or the path from node j to node 1 has length less or equal than Q-p. This observation 

suggests the following conditional version of a double jump inequality. Let S0, S1,...,Sp define a partition of 

the node set V with S0 = {1}, Sp = {i}. Let [Sj, Sj+1] = {(u,v) ∈ A: u ∈ Si, v ∈ Sj} and define J1 = J(S0, 

S1,..., Sp) = ∪ [i+1<j] [Si, Sj]. Let '

0S , '

1S ,..., '

Q-p+1S define another partition of the node set V with '

0S  = {j} 

and '

Q-p+1S = {1} and define J2 = J( '

0S , '

1S ,..., '

Q-p+1S ) = ∪ [i+1<j] [Si, Sj]. For a given arc (i,j) and position p (2 

< p < Q), we consider a conditional double jump set of arcs defined as CDJ = J(S0, S1,..., Sp) ∪ 

J( ' ' '

0 1 Q-p+1S ,S , ,SK ). We refer to such a set CDJ as a ((i,j),Q,p)-conditional double jump and we let 

CDJ((i,j),Q,p) denote the set of all ((i,j),Q,p)-conditional double jumps. To explain the constraints to be 

presented next, assume that arc (i,j) is in the solution and consider a fixed position p. Then, any vehicle 

path from the depot to node i that contains an arc from every set [Sj, Sj+1] taken from J(S0, S1,..., Sp) must 

contain at least p arcs and any vehicle path from node j to the depot that contains an arc from every set [Sj, 

Sj+1] taken from J( ' ' '

0 1 Q-p+1S ,S , ,SK ) takes at least Q-p+1 arcs. These two paths together with the arc (i,j) 

cannot constitute a feasible route. Thus, either the first path contains at most p-1 arcs (and at least one arc 

from a “jump set” [Si, Sj] with i+1 < j taken from J(S0, S1,..., Sp) ) or the second path contains at most Q-p 

arcs (and at least one arc from a “jump set” [Si, Sj] with i+1 < j taken from J(S’0, S1,..., SQ-p+1)). These 

arguments show that the following inequalities are valid, 

( ) ijx CDJ x≥   for all (i,j)∈A, i,j≠1 and CDJ ∈ CDJ((i,j),Q,,p). (6.4) 

Notice that when Q = 3, this inequality becomes the constraint 1 1 + ij i jx x x≤  and when Q = 4 and h = 3 

we obtain the stronger version of the inequality (6.3). A simple generalization of the previous argument 

shows that constraints (6.4) can also be generalized for arc sets. To define these more general constraints 

we need to generalize a little bit, the concept of conditional double jump. For a given arc set (A,B) with A 

∩ B = φ  and A,B ⊆ V\{1}, and position h (2 < h < Q), we consider, now, a conditional double jump set of 

arcs defined as CDJ = J(S0, S1,..., Sp) ∪ J( ' ' '

0 1 Q-p+1S ,S , ,SK ) as before but, this time, setting Sp = A and '

0S = 

B. We refer to such a CDJ set as a ((A,B),Q,h)-conditional double jump and we let CDJ((A,B),Q,p) denote the 

set of all ((A,B),Q,p)-conditional double jump. The inequalities are:  
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( ) ( , )x CDJ x A B≥   for all A,B ⊆ V\{1}, A ∩ B =φ  and CDJ ∈ CDJ((A,B),Q,p). (6.4’) 

Note that constraints (6.4’) contain constraints (6.4) as special cases. The next result, proved in the 

Appendix, states that some of these inequalities are implied by the linear programming relaxation of MPQ. 

It is still open whether all of the inequalities (6.4’) are implied by the linear programming relaxation of 

MPQ. 

Proposition 6.1 The inequalities (6.4’) are implied by the linear programming relaxation of MPQ for all 

Q if one of the following conditions hold: 

iii) p < 3 

iv) p > 4, B ⊆  S1 ∪ S2 and A ⊆  S’Q-p-1 ∪ S’Q-p. 

We note from the conditions in the statement of the proposition that the result is valid when Q = 3 and 4 

independent of the value of p. 

6.2 Flow Based Projected Inequalities 

We can obtain a different class of inequalities by using projection techniques applied to the SCF model 

augmented with the flow bounding inequalities derived in Section 5. We start by reproducing the procedure 

used by Gouveia (1995) (see also Letchford and Salazar-Gonzalez (2006)) for generating the multistar 

inequalities. By adding the flow conservation constraints for nodes j in a set S ⊆ V\{1} (for simplicity, let 

S’ denote the set V\(S∪1)) we obtain: 

(1, ) ( ', ) | |  ( , ')f S f S S S f S S+ = +     for all S ⊆ V\{1}.  (6.5) 

Using the flow upper bound constraints 1 1j jf Qx≤  and ( 1)ij ijf Q x≤ −  on the lefthand side, the flow 

lower bound constraints ij ijf x≥  on the righthand side, and the assignment constraints, we obtain the 

multistar constraints 

( ) ( ( )) | | ( 1)Qx S x S S Qδ+ ≤ − .    for all S ⊆ V\{1}.  (6.6) 

In this expression ( )Sδ  denotes the set of arcs with only one endpoint in S, excluding arcs directed into 

or out of the depot node 1. As noted by Letchford and Salazar-Gonzalez (2006), we can use the same 

procedure to obtain projected inequalities for several versions of the CVRP problem, including variations 

with pick-up and delivery and variations with distance constraints. 

In our context we could obtain many different projected inequalities for the CVRP by using the same 

procedure and bounding the flow sums in equation (6.5) with alternate expressions (5.6a/b)) (note that since 

the first summation of expression (6.5) is always bounded by the same expression (Q (1, )x S ), we will not 
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consider options for it in this discussion). For the moment, we will consider only the following four upper 

bound and lower bound constraints for arcs not entering or leaving node 1. Constraints (2) and (4) 

correspond to the inequalities (5.5a/b) for k = 1. 

  

(1)    ( , ) ( 1) ( , )                   ,  \{1,},

(2)   ( , ) ( 2) ( , )  + (1, )    ,  \{1,},

(3)   ( , ) ( , )                              ,  \{1,},

(4)  ( , ) 2 (

f A B Q x A B A B V A B

f A B Q x A B x A A B V A B

f A B x A B A B V A B

f A B x A

φ
φ
φ

≤ − ⊆ ∩ =

≤ − ⊆ ∩ =

≥ ⊆ ∩ =

≥ , )  - ( ,1)               ,  \{1,}, .B x B A B V A B φ⊆ ∩ =

 

However, a straightforward and naïve use of this procedure will lead to new, but uninteresting 

inequalities in the sense that (see Godinho et al. (2007)) all the inequalities obtained by using the same 

upper bound expression (1) and (2) for all the arcs in the cuts [S’,S] and the same lower bound expression 

(3) and (4) for the arcs in the cut [S,S’] are implied by the multistar constraints (6.6). Fortunately, we can 

generalize this procedure by partitioning the cut sets into two subsets and using different upper (or lower) 

bounds for each partition. Suppose we partition the set S’ into two sets S1 and S2 and for the arcs in the cut 

[S1,S] we bound the flow by using the original upper bound inequality (1) and for the arcs in the cut [S2,S] 

we bound the flow using the inequalities (2). We can perform a similar manipulation with the summation 

on the righthand side by partitioning the cut [S,S’] into two cuts [S,S1] and [S,S2]. Table 6.1 shows how to 

obtain, after some manipulation using the assignment constraints, symmetric inequalities and non-

symmetric inequalities using this procedure.  

 

Option for 

Bounding 

( 1, ) ( 2, )f S S f S S+  

Option for 

Bounding 

( , 1) ( , 2)f S S f S S+  

Resulting Inequality 

(1) + (2) (3) + (4) ( ) 2 ( 2) ( ( )) ( ( 2))

         ( , 2) ( 2, ) | | ( 1) 2 | 2 |

Qx S x S x S x S

x S S x S S S Q S

δ δ+ + +

+ + ≤ − +
       (6.7) 

(1) + (2) (4) + (3) ( ) ( 1) ( 2) 2 ( ( ))

          + 2 ( 1, 2)) | | ( 1) | 1 | | 2 |

Qx S x S x S x S

x S S S Q S S

δ+ + + +

≤ − + +
               (6.8) 

Table 6.1.  Inequalities generated from bounding aggregated flow constraints. 

We note that when either S1 or S2 is empty, we obtain dominated inequalities (since these inequalities 

are obtained by using the same expression for all the arcs in the cuts [S’,S] and [S,S’]). Note also that when 

S2 is empty, the inequalities (6.7) become the multistar constraints (6.6). 
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To see how effective the constraints (6.7) and (6.8) might be, we tested them on small problem 

instances with n = 5, 6 and 7, Q = 3, 4 and 5 and almost all choices of |S1|, |S2| and |S| (we conducted the 

test by solving the linear programming relaxation of the SCF model with an objective function equal to the 

left hand side of the constraint (6.7) or (6.8)) For these small networks inequalities (6.7) were implied by 

the multistar constraints (6.6) for Q = 3. In addition for Q = 3, we can formally show that the inequality 

(6.7) is redundant since it is implied by the multistar constraint (6.6) for the set (S ∪ S2). However, for Q > 

3, we can find solutions that are feasible for the linear programming relaxation of SCF but are violated by 

(6.7). In contrast, for many of these small instances, the asymmetric instances (6.8) were not dominated. As 

an example, the solution depicted in Figure 5.1 violates the asymmetric constraint (6.8) for S={2,6}, 

S1={5} and S2= {3,4}.  

We can obtain a more general set of constraints (that we will not describe here – see Godinho et al. 

(2007)) if we generalize the previous procedure by partitioning the cut [S’,S] into two cuts [S1,S] and 

[S2,S] and the cut [S,S’] into two cuts [S,S3] and [S,S4] (S3 does not necessarily equal S1 or S2). The 

inequalities (6.7) and (6.8) are particular cases of these more general inequalities, obtained when S1 = S3 

and S2 = S4 or S1 = S4 and S2 = S3. 

We have to this point partitioned the set S’ in the expression (6.5). Instead we can partition the set S 

into two sets S1 and S2. We note (but do not include the proof here – again, see Godinho et al (2007)) that 

i) inequalities obtained by partitioning the cut [S’,S] into two cuts [S’,S1] and [S’,S2] and partitioning the 

cut [S,S’] into two cuts [S3,S’] and [S4,S’] and ii) inequalities obtained by partitioning either the UB term 

or the LB term (but not both), also lead only to inequalities that are implied by the multistar constraints.  

To this point, in our effort to identify inequalities implied by the model MPQ we have partitioned the 

set S’ in the flow expression (6.5) into two sets and used the simpl3 upper and lower bounds (1) - (4).  To 

uncover other, more complicated, inequalities we might use partitions with more sets and use the more 

complicated jump bounds (5.7a/b).  There are many such possibilities.  As an illustration consider 

inequalities that arise when we partition the set S’ in the cuts [S’,S] and [S,S’] into three subsets S1, S2 and 

S3. Once we set the (arbitrary) order S1, S2, S3 for the upper bounding, we have six different options for 

ordering the sets in the lower bounding.   We won’t consider all possibilities, but will develop three sets of 

inequalities, one generalizing each of the inequalities (6.7) and (6.8) and one with a new form.   

For the bounding we will use the simple upper and lower bounds (1) and (3) for some of the flows and 

the following four sets of inequalities, one a jump upper bound (5.7a) and three alternate jump lower 

bounds (5.7b): 

(5) 

2 3

0 2

0 1 1 2 2 3 3

( 2, ) ( 3, ) ( 2) ( 2, )  ( 3) ( 3, ) + ( 1) ( , )

                                  {1}, ,   

p q

p q p

f S S f S S Q x S S Q x S S q p x A A

with A A S S A S and A S

= = +

+ ≤ − + − − −

= = ∪ = =

∑ ∑
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(6) 

2 3

0 2

0 3 1 2 2 1 3

( , 2) ( , 3) 2 ( , 2)  3 ( , 3) + ( 1) ( , )

                                  , ,   {1}

p q

p q p

f S S f S S x S S x S S q p x A A

with A S A S A S S and A

= = +

+ ≥ + − −

= = = ∪ =

∑ ∑
 

(7) 

2 3

0 2

0 3 1 1 2 2 3

( , 1) ( , 3) 2 ( , 1)  3 ( , 3) + ( 1) ( , )

                                  , ,   {1}

p q

p q p

f S S f S S x S S x S S q p x A A

with A S A S A S S and A

= = +

+ ≥ + − −

= = = ∪ =

∑ ∑
 

(8) 

2 3

0 2

0 1 1 2 2 3 3

( , 2) ( , 1) 2 ( , 2)  3 ( , 1) + ( 1) ( , )

                                  , ,   {1}.

p q

p q p

f S S f S S x S S x S S q p x A A

with A S A S A S S and A

= = +

+ ≥ + − −

= = = ∪ =

∑ ∑
 

Note that the coefficients q – p  – 1  in these inequalities will be at most two. 

By using the inequalities (1) with A = S1 and B = S and (5) for the upper bounds, and (3) with A=S and 

B = S1 and (6) for the lower bounds, we obtain the following generalization of (6.7)  

( ) 2 ( 2) 4 ( 3) ( ( )) ( ( 2)) ( ( 3)) ( 2, 1) + ( 1, 2)

                                      + ( , 2) ( 2, ) ( , 3) ( 3, ) | | ( 1) 2 | 2 | 4 | 3 | .

Qx S x S x S x S x S x S x S S x S S

x S S x S S x S S x S S S Q S S

δ δ δ+ + + + + + +

+ + + ≤ − + +
 (6.9) 

and by using the inequalities (1) with A = S1 and B = S and (5) for the upper bounds, and (3) with A = S 

and B = S2 and (7) for the lower bounds, we obtain the following generalization of  (6.8): 

( ) ( 1) ( 2) 4 ( 3) 2 ( 1, 2)) 2 ( ( )) 2 ( ( 3)

                                                                    | | ( 1) | 1 | | 2 | 4 | 3 | .

Qx S x S x S x S x S S x S x S

S Q S S S

δ δ+ + + + + + ≤

≤ − + + +
  (6.10) 

Note that when S3 is empty, the previous inequalities reduce to (6.7) and (6.8). Finally, by using the 

inequalities (1) with A = S1 and B = S and (5) for the upper bounds, and (3) with A = S and B = S3 and (8) 

for the lower bounds, we obtain the following inequality: 

( ) 2[ ( 1) ( 2) ( 3)] 2 ( ( )) ( , 1 2) ( 2 3, )+ 2 ( 1, 3)

         3[ ( 1, 2) ( 2, 3)] ( 3, 2) ( 2, 1) | | ( 1) 2(| 1 | | 2 | | 3 |).

Qx S x S x S x S x S x S S S x S S S x S S

x S S x S S x S S x S S S Q S S S

δ+ + + + + ∪ + ∪

+ + + + ≤ − + + +
 (6.11) 

These inequalities demonstrate something we have mentioned in the introduction of this section, namely 

we can tighten some inequalities obtained by manipulating inequalities from SCF augmented with the 

constraints (5.6a/b) or (5.7a/b) by using direct derivations from the model MPQ. In fact, for the specific 

case of Q = 3, we can tighten inequalities (6.7) and (6.8). As we have noted before the inequality (6.7) is 

dominated by a multistar constraint and inequality (6.8) is dominated by the following inequality 

3 ( ) ( 1) ( 2)+ 2 ( ( )) 2 ( 1, 2) ( 2, 1) 2 | | | 1 | | 2 |x S x S x S x S x S S x S S S S Sδ+ + + + ≤ + +   (6.12) 
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which is implied by the linear programming relaxation of MPQ. Something similar happens with 

inequalities (6.9), (6.10) and (6.11) and Q = 4. For instance, the following inequality is implied by the 

linear programming relaxation of MPQ: 

4 ( ) 2[ ( 1) ( 2) ( 3)] 3 ( ( ))  3[ ( 1, 2) ( 2, 3) ( 1, 3)]

                                    2[ ( 2, 1) ( 3, 2) ( 3, 1)] 3 | | 2(| 1 | | 2 | | 3 |),

x S x S x S x S x S x S S x S S x S S

x S S x S S x S S S S S S

δ+ + + + + + +

+ + + ≤ + + +
 (6.13) 

and it implies the inequality (6.11) when Q = 4. We refer to Godinho et al. (2007) for a proof that these two 

inequalities, (6.12) and (6.13) are implied by the linear programming relaxation of MPQ. 

All of these inequalities are implied by the linear programming relaxation of MPQ. However, they can 

be used to generate inequalities that are not implied by the linear programming relaxation of MPQ. As an 

illustration, recall the following well-known fact. If, for a given set S, we divide the corresponding 

multistar constraint by Q and apply integer rounding, we obtain the generalized subtour elimination 

constraint (see Section 2) for the set S. Applying the same procedure to constraints (6.9), (6.10) and (6.11) 

for a given set S leads to the same inequality. However, if for a given set S, we divide inequality (6.10) by 

2 and use integer rounding we obtain the following inequality 

/ 2 ( ) 2 ( 3) ( 1, 2)) ( ( )) ( ( 3)

                                                                    (| | ( 1) | 1 | | 2 | 4 | 3 |) / 2 .

Q x S x S x S S x S x S

S Q S S S

δ δ+ + + + ≤  

≤ − + + +  
  (6.14) 

A few experiments with small instances for Q = 3, 4 and 5 have indicated that the inequalities (6.14) are 

not implied by the linear programming relaxation of MPQ. In Figure 6.1 we indicate one such solution for a 

situation when Q = 3 and S3 is empty. It is easy to see that the solution shown in the figure violates 

constraint (6.14) for S { }7= ,  S1 { }5 6,= and S2 { }2 3 4, ,= . Note also that this solution does not violate any 

of the generalized subtour elimination constraints. 
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Figure 6.1 – A feasible solution for the MPQL model that violates inequality (6.14). The topmost figure 

shows the values of the z variables and the bottommost the values of the x variables.  

In a similar manner we can generate a rounded inequality from (6.11) leading to 

/ 2 ( ) ( 1) ( 2) ( 3) ( ( ))  ( 1, 3) ( 1, 2) ( 2, 3)

                                                                     (| | ( 1) 2(| 1 | | 2 | | 3 |)) / 2

Q x S x S x S x S x S x S S x S S x S S

S Q S S S

δ+ + + + + + +  

≤ − + + +  
 (6.15) 

We can also obtain rounded inequalities (6.12) for Q = 3 and (6.13) respectively for Q = 4. However, 

these inequalities will be equivalent to (6.14) with Q = 3 and to (6.15) with Q = 4.  

7. Computational Results 

In this section we empirically evaluate the quality of the lower bounds given by the two time-dependent 

models presented in the previous sections. For comparing the models, we use data for complete graphs with 

40 and 80 nodes plus the depot. We have considered three test sets. For the first two sets, the nodes have 

been randomly selected in a square grid with Euclidean arc lengths. These tests are divided according to the 

location of the depot. The designation TEM refers to Euclidean cost instances with the depot located in the 

middle of the grid and the designation TEC refers to Euclidean cost instances with the depot located in the 

corner. We have also considered two sets of random costs instances, one set with symmetric edge costs 
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(denoted by TRS) and another set with asymmetric cost instances (denoted by TRA). The costs of the edges 

of the TRS instances were generated from an uniform distribution in the interval [1,100] while the costs of 

the arcs of the TRA instances were generated from an uniform distribution in the same interval. Each group 

includes 5 complete graph instances. 

The models that we are comparing are the models SCF, MPQ, MPQ* and SCF+ (which is SCF 

augmented with inequalities (5.1a/b) of Section 5). Table 7.1 presents the average linear programming gaps 

(computed as [(Optimal Value – v(PL))/Optimal value]*100 for each group. We solved the linear 

programming relaxations using the CPLEX 9.0 software package on a Pentium IV, 3.4GHz computer with 

1Gb of RAM, and obtained the optimal solutions by running the model MPQ* with the branch-and-cut 

algorithm of CPLEX. Table 7.2 presents the CPU times for solving the linear programming relaxations of 

each model and for finding the integer solution. 

 

 

n Q SCF SCF+ MPQ MPQ* 

3 3,22 3,22 3,22 1,09 
41 

5 8,59 7,66 4,94 1,95 

3 2,02 2,02 2,02 0,51 
TEM 

81 
5 5,42 3,61 2,39 0,94 

3 2,96 2,96 2,96 0,65 
41 

5 5,40 3,79 2,87 1,10 

3 1,48 1,48 1,48 0,42 
TEC 

81 
5 3,90 2,84 2,22 0,82 

3 2,45 2,45 2,45 1,32 
41 

5 5,79 4,30 4,16 0,68 

3 2,62 2,62 2,62 2,31 
TRS 

81 
5 4,29 2,36 2,35 0,19 

3 5,57 3,30 3,03 2,74 
41 

5 7,14 5,37 2,56 2,08 

3 3,30 1,32 1,26 1,38 
TRA 

81 
5 5,88 3,82 1,32 1,31 

Table 7.1 –  Average gaps of the linear programming relaxation bounds of several models. 
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N Q SCF SCF+ MPQ MPQ*  

3 1,17 4,71 0,05 0,24 6,86 
41 

5 2,22 4,41 0,19 1,78 2755,47 

3 12,14 237,59 0,31 2,35 190,40 
TEM 

81 
5 22,03 118,57 2,34 24,35 76504,92 

3 1,29 6,13 0,05 0,84 3,28 
41 

5 1,25 5,64 0,25 2,32 684,80 

3 14,39 151,25 0,31 2,47 598,81 
TEC 

81 
5 22,78 140,06 2,10 31,69 97879,57 

3 1,74 6,32 0,04 0,27 0,6 
41 

5 1,68 4,23 0,35 2,79 13,2 

3 15,01 138,22 0,28 2,67 125,1 
TRS 

81 
5 21,54 141,94 4,21 41,57 1491,0 

3 1,70 6,07 0,05 0,24 0,6 
41 

5 1,55 3,18 0,31 1,78 3,4 

3 17,48 103,74 0,32 2,27 16,1 
TRA 

81 
5 21,94 70,20 5,05 1,31 34,8 

 

Table 7.2 –  Average CPU times in seconds of the linear programming relaxation bounds of 

several models. The rightmost column specifies the CPU times for obtaining the 
optimal integer solutions with model MPQ*. 

The single commodity models contain 2*n
2
 variables and the time-dependent models contains Q*n

2
 

variables. The MPQ model contains Q*n constraints and the MPQ* contains Q*(n + n
2
) constraints. 

Therefore, the largest model being solved (MPQ*) contains more than 32,805 variables and 32,400 

constraints. 

The results indicate that the linear programming relaxation of the model MPQ produces reasonable 

improvements over the linear programming of SCF for the Q = 5 instances. For Q = 3 the reported gaps for 

all the symmetric instances (instances TEM, TEC and TRS) are the same for the two models. However, we 

obtain reasonable improvements for the TRA instances. The discrepancy between asymmetric and 

symmetric results reported for Q = 3 conform to our analysis (see Section 6) of the inequalities implied 

from the linear programming relaxation of MPQ.  

The results also indicate that for the instances with Q = 5 (where the linear programming relaxation of 

MPQ improves upon the linear programming relaxation of SCF), the gap reduction from model SCF 

obtained by the linear programming relaxation of the model SCF+ is about 60 percent of the gap reduction 

obtained by the linear programming relaxation of the model MPQ (with a range of 25 to 99 percent). For Q 

= 3 and the asymmetric instances, it appears that the simple flow bounding inequalities (5.1a/b) are very 

effectives since the gaps produced by SCF+ are quite close to the ones obtained by MPQ. 

The computations also show a difference between the gaps provided by the two hop indexed models 

MPQ and MPQ* for the symmetric and asymmetric instances (recall that MPQ* is obtained by adding 
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inequalities (3.1) to the MPQ model). For symmetric instances the addition of these inequalities leads to a 

reduction of about 50 per cent from the linear programming relaxation gaps of the original MPQ model. 

The model MPQ* seems to be a good option for solving small and medium sized symmetric instances (up 

to 81 nodes) whenever Q is reasonably small. In these instances, the model is very attractive to use within 

an ILP package because it is small and it provides reasonable lower bounding values. To obtain the optimal 

integer solutions, the average CPU times do not show the high variability of the individual problem 

instances as compared with the variability from one group of problem instances to another. For instance, 

for the EM instances with n = 81 and Q = 3, one instance is solved within 100 seconds while another is 

solved after 40,000 seconds. We might note that the computational results we have obtained are not 

competitive with other, more intricate methods (as for instance, the methods described in Lysgaard, 

Letchford and Eglese (2004) and Fukasawa et al. (2006)). However, it is worth having a model that 

essentially anyone can implement and that can solve instances within certain parameters (i.e., small values 

of Q)..  

Perhaps, one way of explaining why adding constraints (3.1) to MPQ is not that effective for the 

asymmetric cases, is to see why it is effective for the symmetric cases. Note that for a symmetric instance, 

an attractive “edge” {i,j} (one with a small cost) is very likely used in the two directions, allowing both of 

the variables 
t

ijz  and 
1t

ijz
+

 (for a certain t) to be simultaneously positive. Inequalities (3.1) prohibit these 

situations. Note that these situations are less likely to occur in asymmetric instances due to the cost 

structure. 
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Appendix 

 

In this Appendix we prove some of the Propositions stated in the text. For any pair of node sets A and B 

and for any h, h=2,3,..,Q we let ( , )hz A B  denote 
,

h

iji A j B
z

∈ ∈∑  and let ( )hz A  denote the case when A = B. 

We start by proving Proposition 6.1 since it is simpler than the proof of Propositions 5.1 and 5.2. 

Proposition 6.1 The inequalities (6.4’) are implied by the linear programming relaxation of MPQ for all 

Q if one of the following holds: 

i) p < 3 

ii) p > 4, B ⊆  S1 ∪ S2 and A ⊆  S’Q-p-1 ∪ S’Q-p. 

Proof: Let 
0 1 -1( , ,..., , )p pJ S S S S and 

0 1 1( ' , ' ,..., ' , ' )Q p Q pJ S S S S− − +  be jump sets as specified in Section 6. 

First, note that 
2,..., 2,..., 1,...,

( , ) ( , ) ( , ) ( , )h h h

h Q h p h p Q
x A B z A B z A B z A B

= = = +
= = +∑ ∑ ∑ for any p =2,…,Q. 

Therefore, we can establish the desired inequality ( ) ( , )x CDJ x A B≥ if we can show that    

0 1 -12,..., 1,..., 0,..., 2 2,..., 1,...,

' '

0 1 11,..., 2,..., 1 0,..., 1 2,..., 1

( , ) ( , ) ( ( , ,..., , ))

( , ) ( , ) ( ( ' , ' ,..., ' , '

h h h

q r p ph p h Q q p r q p h Q

h h h

q r Q p Q ph p Q h Q q Q p r q Q p

z A B z S S z J S S S S

z A B z S S z J S S S S

= = = − = + =

− − += + = + = − − = + − +

≤ =

≤ =

∑ ∑ ∑ ∑ ∑
∑ ∑ ∑ ∑ 2,..., 1

))
h Q= +∑

 

We actually will establish a stronger inequality with the index h = 2,…,Q replaced by h = 1,…,p-1 in 

the first inequality and h = 2,…,Q replaced by h=p+2,..,Q+1 in the second inequality. 

In the previous expression we assume for simplification that p = 3,…,Q-1. When p = 2, the first 

inequality corresponds to the easily established inequality 2 ( , ) (1, )z A B x A≤  while when p = Q-1, the 

second inequality corresponds to the easily established inequality ( , ) ( ,1)Qz A B x B≤ . 

Next, we will prove the first inequality (the proof for other inequality is similar). 

In the following, let S
p+1 = B and recall that S

p = A and S
0 = {1}. The fact that the sets Sr (r = 1,…,p) are 

disjoint, the fact that rB S φ∩ = for all r=3,…,p-1, and the flow equations for the h

ijz  variables in the MPQ 

formulation imply the following inequalities 

1
1

1 1 1 1

2
1 1

1 1
                                 = 

r j r p
q q q

j r j r r jr q ,..., j r q r

r j r p
q q

r j r j
r r j

z ( S ,S ) z ( S , S ) z ( S ,S )

z ( S ,S ) z ( S ,S )

= + =
−

= + + = + =
= − =

− −

= = −

= ∪ ≤ ∪ =

∪ + ∪

∑
for all (j,q) such that (p > j > q > 3)     (A.1) 
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The inequality is valid since the righthand side is the total flow into the set S
j
 while the left hand side is 

the partial flow out of this set. The first term after the final inequality contains valid jump terms and the 

final term contains invalid terms for the jump inequalities. 

We write next an analoge of inequality (A.1) for q = 2. The validity of the inequality follows from the 

fact that the sets Sr (r = 1,…,p) are disjoint and from the flow equations for the h

ijz  variables in the MPQ 

formulation 

2 2 1

3 13 1
1j r j j jr ,..., j

z ( S ,S ) z ( S ,S ... S ) z ( ,S )+= +
= ∪ ∪ ≤∑  for all j such that (p > j > 2)      (A.2) 

Note that for any fixed u and t with p > u > t-1 > q-1, the term 1q

u tz ( S ,S )−  appears in the righthand 

side of the inequality (A.1) for the pair (t,q) and appears in lefthand side of inequalities A.1 or A.2, 

according to the value of q. If q-1=2, it appears in the lefthand side of A.2 for the pair (u,q-1); if q-1 > 3, it 

appears on the lefthand side of A2 for the pair (u,q-1). Note also that when j = p and S
p
 = A, the lefthand 

side of the inequality (A.1) becomes 1 2 1

q q

q q p jz ( A,S S ... S A ) z ( S ,B )+ + −∪ ∪ ∪ ∪ +  and the inequality is 

valid only if rB S φ∩ =  for all r=q+1,…,p-1. Otherwise, the first equality in the inequality (A.1) will not 

be valid since it would contain overlapping terms q

p rz ( S ,S )  and q

pz ( S ,B )  for some r = q+1,…,p-1 and 

we would need to use a coefficient of 2 on the righthand side of the inequality. 

By adding inequalities (A.1) for all (j,q) such that  p > j > q > 3 and inequalities (A.2) for all (j,2) withp 

> j > 2 and by canceling equal terms we obtain the desired inequality 

To prove Proposition 5.1 we, first, develop two lemmas. 

Lemma 1: The model MPQL implies the inequalities  

( ) ( ) ( ) ( )
2,.., 1

,  ( 1 ) ,  + 2 ,  h

h k

f A B Q k x A B k h z A B
= +

≤ − − − +∑  

{ }, 1 , 1,..., - 2  ,   for all A B V A B k Q⊆ − ∩ =∅ =  and  

( ) ( ),  ( 1) ,  -f A B k x A B≥ + ( )
1,...,

( ) ,
h Q k Q

h
k h Q z A B

= − +

+ −∑   

 { }, 1 , 1,..., - 2  ,   for all A B V A B k Q⊆ − ∩ = ∅ =  

Proof: We will provide the proof for the upper bound constraints. The proof for the lower bound 

constraints is similar and is omitted.  
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Using (4.2) and the linking constraints of MPQL, we can rewrite the upper bound expression in the 

statement of the lemma as: 

( ) ( ) ( )
2,.., 2,.., 2,... 1

( 1) ,   ( 1 ) ,    + ( 2) , .h h h

h Q h Q h k

Q h z A B Q k z A B k h z A B
= = = +

− + ≤ − − − +∑ ∑ ∑  

Canceling terms and rewriting the lefthand side, we obtain 

( ) ( ) ( )
2,... 1 2,.., 2,... 1

( 2) ,  + ( 2) ,   ( 2) , . h h h

h k h k Q h k

k h z A B k h z A B k h z A B
= + = + = +

− + − + ≤ − +∑ ∑ ∑  

Finally, since ( )
2,..,

( 2) , 0h

h k Q

k h z A B
= +

− + ≤∑  for all h and for all  A, B, the result follows  

Lemma 2: For k =2,…,Q-2, the model MPQL implies the inequalities  

( ) { }
2,... 1 0,..., -1 2,..., 1

0 1 0

( 2) , ( 1) ( , )      A,B 1 , , 2,..., - 2 

                                                    ( ,..., )    {1

h

p q

h k p k q p k

k

k h z A B q p x S S for all V A B k Q

and all partitions S S of V with S

= + = = + +

+

− + ≤ − − ⊆ − ∩ = ∅ =

=

∑ ∑ ∑

1 1 2},   .kS A and B S S+ = ⊆ ∪

 

( ) { }
0,..., -1 2,..., 1

0 1 0

2,.., 1

( 1) ( , )      , 1 2,..., 2 

                                                       ( , ..., )    

( ) , , ,
p q

p k q p k

k

h

h k

q p x S S for all A B V k Q

and all partitions S S of V with S

k h Q z A B A B
= = + +

+

= +

≥ − − ⊆ − = −+ − ∩ = ∅∑ ∑∑

1 1, {1}  .
k k kB S and B S S+ −= = ⊆ ∪

 

Proof: As before we will provide the proof for the upper bound constraints. Consider a fixed k = 

2,…,Q-2 and a partition S0, S1, ..,Sq,…,Sk+1 of V with S0={1}and Sk+1=A. The equations of the MPQ model 

imply the following inequalities 

{ }1( , \ 1 )  ( , )        for 2,..., 1, 1,..., 1.h h

q qz S V z V S q k h Q+ = = + = −     (L2.1) 

Consider P+1 mutually disjoint subsets, 1 2, , ..., , .., ,p PQ Q Q Q T .  Consider, as well, P+2 nonnegative 

integers 1 2, , ..., , ,P Tα α α α β  with { }1 2max , , ..., , 0P Tβ α α α α≥ ≥  The previous inequalities imply that the 

following general inequalities are valid for all 2,..., 1, 1,.., 1q k h Q= + = − . 

 
1

1 1 1 1

1 2 2( , ) ( , ) ... ( , ) ( , )  ( , ). h h h h h

q q p q P T q qz S Q z S Q z S Q z S T z V Sα α α α β+ + + ++ + + + ≤   (L2.2) 

We consider next two particular instances of this expression.  In both cases, for each q=2,..,k+1, we 

choose h=1,..,q-1, P = k-h, Qp = Sh+p+1 for p =1,…,P, T = B  and q hβ = − . We chose the values of the 
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multipliers as follows: For q=2,..,k , we let p pα =  if 1, .., 1p q h= − − , p q hα = −  if p = q – h,…,P and 

0Tα =  leading to (L2.3);  for q=k+1 we let 
p pα =  for 1, ..,p P=  and 

T q hα = −  leading to (L.2.4) 

( )1 1

1 1

1,.., 1 ,..,

( , ) ( ) , ( ) ( , ) 

                                                                      2, ..., ,  1, ..., 1

h h h

q p h q l h q

p q h p q h k h

p z S S q h z S S q h z V S

for all q k h q

+ +
+ + + +

= − − = − −

+ − ≤ −

= = −

∑ ∑
  (L2.3) 

and 

( )1 1

1

1,.., 1

( , ) ( ) , ( ) ( , ) 

                                                                     1,  1,..., 1.

h h h

q p h q q

p k h

p z S S q h z S B q h z V S

for q k h q

+ +
+ +

= − −

+ − ≤ −

= + = −

∑
    (L2.4) 

We stress the relevance of the condition 1 2B S S⊆ ∪ given in the statement of the Proposition for this 

inequality. If this condition does not hold, the inequality (L2.4) is no longer valid, since the terms 

( )1 ,h

qz S B+  and ( )1

1,h

q p hz S S+
+ +  for some p = 1,2, ..., k-h-1 will contain the same term ( )1 ,h

q rz S S+ for 

some r and the multiplier of this term will equal p+(q-h) which is larger than the specified q-h . When, 

1 2B S S⊆ ∪ , this will not happen since the first summation starts with ( )1

3,h

qz S S+ .  

The two classes of inequalities, (L2.3) and (L2.4) are implied by the equalities of the MPQL model since 

they are particular cases of the more general inequality (L2.2). 

Adding (L2.3) for q = 2,…,k and h=1,..q-1, adding the (L2.4) for h=1,…,k, adding the two resulting 

inequalities, canceling equal terms and re-indexing the summation indices, we obtain: 

( ) ( ) ( ) ( )
2,... 1 2,.., 1 1,.., 1 0,.., 1 ,.., 2

( 2) , ( ) , 1 , .h h h

p q p q

h k q k h q p h p h q

k h z A B q h z S S q p z S S
= + = + = − = − = −

 
− + ≤ − + − − 

 
∑ ∑ ∑ ∑ ∑  

The nonnegativity constraints of the variables z, imply that 

( )
2,.., 1 1,.., 1 0,.., 1

0 ( 1) , .h

p q

q k h q p h

h p z S S
= + = − = −

 
≤ − − 

 
∑ ∑ ∑  

Adding the two previous inequalities gives 

( ) ( )
2,... 1 2,.., 1 1,.., 1 0,.., 2

( 2) , ( 1) ,h h

p q

h k q k h q p q

k h z A B q p z S S
= + = + = − = −

− + ≤ − −∑ ∑ ∑ ∑  

Finally, by adding the following inequality 
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( )
2,.., 1 ,.., 0,.., 1

0 ( 1) ,h

p q

q k h q Q p h

q p z S S
= + = = −

≤ − −∑ ∑ ∑  

to the previous inequality, we obtain the desired inequality.      

Proposition 5.2. When with S ⊆ S1 ∪ S2 the model MPQL implies the upper bound inequalities (5.6a) 

and when S ⊆  Sk-1 ∪ Sk the MPQL model implies the lower bound inequalities (5.6b). 

Proof: For the case k >1, the proof follows from the two previous lemmas and transitivity. Consider, 

the case k = 1 (as usually, we produce the proof only for the upper bound constraint).  From the inequality 

of Lemma 1 

( ) ( ) ( )2,  ( 2) ,  + ,f A B Q x A B z A B≤ −  { }, 1 ,  for all A B V A B⊆ − ∩ =∅  

and the inequality ( ) ( )2 1, 1,z A B z A≤  (this follows from the equality constraint of the MPQ model for h = 

1), we obtain the desired inequality.        . 

In the next result we prove the validity for k = 2. 

Proposition 5.3 – The model MPQL implies the inequalities (5.7a/b). 

Proof: As before, we present the proof for only the upper bound constraints. We consider fixed sets S’ 

and S. By adding the first inequality of Lemma 1 for all i ∈ S’ and considering k = 1, we obtain  

2 3

' ' '

 ( 3)  + (2 )ij ij ij ij

i S j S i S j S i S j S

f Q x z z
∈ ∈ ∈ ∈ ∈ ∈

≤ − +∑∑ ∑∑ ∑∑ . 

The MPQ equations for h = 1 and the constraints linking the 
ijx  with the h

ijz  variables imply that 

2

1

' '

2 2 .ij i

i S j S i S

z x
∈ ∈ ∈

≤∑∑ ∑   For the remaining term, consider any set \{1}P V⊆  with S’ ⊆ V\(P∪{1}) and the 

following relationships  

3 2 2 2

' ' \{1} ' ' \ ( {1})

1 2

1

' \( {1})

1 2

1

' \( {1}) ' \( {1}) 3

1

1

  

             

            

            

ij ki ki ki

i S j S i S k V i S k P i S k V P

k ki

k P i S k V P

t

k ki ki

k P i S k V P i S k V P t

k

k

z z z z

z z

z z z

z

∈ ∈ ∈ ∈ ∈ ∈ ∈ ∈ ∪

∈ ∈ ∈ ∪

∈ ∈ ∈ ∪ ∈ ∈ ∪ ≥

≤ = +

≤ +

≤ + +

=

∑∑ ∑ ∑ ∑∑ ∑ ∑

∑ ∑ ∑

∑ ∑ ∑ ∑ ∑ ∑

' \ ( {1}) 2

.
t

ki

P i S k V P t

z
∈ ∈ ∈ ∪ ≥

+∑ ∑ ∑ ∑
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Using the constraints of the PQ formulation linking the ijx  with the h

ijz  variables, we obtain the desired 

inequalities. , 

To prove Proposition 5.2, we first introduce two Lemmas,  

Lemma 3 – The model MPQL implies the following equalities  

{ }

1 1 1

2 2 2 2

1 2 1

( , ) ( ) ( , )  + ( 1) ( , ),

                            ( , ,..., , )  1 , 1,.., 2

k k k u
h

u u u

u u u h

k

f S S Q u x S S u h z S S

for all partitions S S S S of V k Q

+ + +

= = = =

+

≤ − − +

− = −

∑ ∑ ∑∑
   (L2.a)  

{ }

1 1 1

2 2 2 1

1 2 1

( , )  ( , )  ( 1) ( , ) ,

            ( , ,..., , )  1 , 1,.., 2.

Qk k k
h

u u u

u u u h Q k

k

f S S u x S S u h Q z S S

for all partitions S S S S of V k Q

+ + +

= = = = − +

+

≥ − + − −

− = −

∑ ∑ ∑ ∑
    (L2.b)  

Proof: The proof is similar to the proof of Lemma 1 and is omitted. , 

Lemma 4 – For k=2,…,Q-2, the model MPQL implies the following equalities  

1 -1 1

2 2 0 2

1 1 0 1 1

( 1) ( , ) ( 1) ( , )   2,..., 2 

      ( ,..., , )  \{1}   {1},  

  ( 2,..., 1).

k u k k
h

u p q

u h p q p

k

u u

u h z S B q p x A A k Q

and partitions S S B of V such that A A S B

and A S u k

+ +

= = = = +

+

− + ≤ − − = −

= = ∪

= = +

∑∑ ∑ ∑
  (L4.a) 

{ }

1 -1 1

2 1 0 2

1 1 0 1

1 1

( 1) ( , ) ( 1) ( , )   1,..., 2 

  ( ,..., , )  \{1}   ,

( 2,..., 1),  B, 1 .

Qk k k
h

u p q

u h Q k p q p

k k

u k u k k

u h Q z S B q p x A A k Q

and partitions S S B of V such that A S

A S u k A S A

+ +

= = − + = = +

+ +

− +

+ − − ≥ − − = −

=

= = − = ∪ =

∑ ∑ ∑ ∑
 (L4.b) 

Proof: As before, we produce a proof only for the upper bound constraint. The proof for the lower 

bound constraint is similar. 

Recall inequalities (L.2): 

 
1

1 1 1 1

1 2 2( , ) ( , ) ... ( , ) ( , )  ( , ). h h h h h

q q p q P T q qz S Q z S Q z S Q z S T z V Sα α α α β+ + + ++ + + + ≤   (L2.2) 

In the proof of Lemma 2, we have shown that the MPQL model implies these inequalities  for  all 

2,..., 1, 1,..., 1q k h Q= + = − , with { }1 2max , , ..., , 0P Tβ α α α α≥ ≥  Now, we also consider two particular 

instances of this expression, and, as before,  in both cases, for each q=2,..,k+1, we choose h=1,..,q-1, P = k-
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h, Qp = Sh+p+1 for p =1,…,P, T = B  and q hβ = − . However , we now chose the values of the multipliers in 

a slightly different manner: For q=2,..,k , we let p pα =  if 1, .., 1p q h= − − , p q hα = −  if p = q – h,…,P 

and T q hα = −  leading to (L4,1);  for q=k+1 we let p pα =  for 1, ..,p P=  and T q hα = −  leading to 

(L.4.2) 

( )1 1 1

1 1

1,.., 1 ,..,

( , ) ( ) , ( ) ( , ) ( ) ( , ) 

                                                                      2,..., ,  1,..., 1

h h h h

q p h q l h q q

p q h p q h k h

p z S S q h z S S q h z S S q h z V S

for all q k h q

+ + +

+ + + +

= − − = − −

+ − + − ≤ −

= = −

∑ ∑
  (L4.1) 

and 

( )1 1

1

1,.., 1

( , ) ( ) , ( ) ( , ) 

                                                                     1,  1,..., 1.

h h h

q p h q q

p k h

p z S S q h z S B q h z V S

for q k h q

+ +
+ +

= − −

+ − ≤ −

= + = −

∑
    (L4.2) 

We stress the relevance of the condition 1 1A S B= ∪ specified in the statement of the Proposition, for 

this inequality. If this condition does not hold, the inequality (L4.2) is no longer valid, since the terms 

( )1 ,h

qz S B+  and ( )1

1,h

q p hz S S+
+ +  for some p = 1,2, ..., k-h-1 will contain the same term ( )1 ,h

q rz S S+ for 

some r and the multiplier of this term will equal p+(q-h) which is larger than the specified q-h . When, 

1 2B S S⊆ ∪ , this will not happen since the first summation starts with ( )1

3,h

qz S S+ .  

The two classes of inequalities, (L4.1) and (L4.2) are implied by the equalities of the MPQL model since 

they are particular cases of the more general inequality (L2.2). 

Adding (L4.1) for q = 2,…,k and h=1,..q-1, adding the (L.4.2) for h=1,…,k, adding the two resulting 

inequalities, canceling equal terms, and re-indexing the summation indices, we obtain: 

( ) ( ) ( ) ( )
2,... 1 2,.., 2,.., 1 1,.., 1 0,.., 1 ,.., 2

( 1) , ( ) , 1 , .h h h

u p q p q

u k h u q k h q p h p h q

u h z S B q h z S S q p z S S
= + = = + = − = − = −

 
− + ≤ − + − − 

 
∑ ∑ ∑ ∑ ∑ ∑

 

The nonnegativity constraints of the variables z, imply that 

( )
2,.., 1 1,.., 1 0,.., 1

0 ( 1) , .h

p q

q k h q p h

h p z S S
= + = − = −

 
≤ − − 

 
∑ ∑ ∑  

Adding the two previous inequalities gives 

( ) ( )
2,... 1 2,.., 2,.., 1 1,.., 1 0,.., 2

( 1) , ( 1) ,h h

u p q

u k h u q k h q p q

u h z S B q p z S S
= + = = + = − = −

− + ≤ − −∑ ∑ ∑ ∑ ∑  
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Finally, by adding the following inequality 

( )
2,.., 1 ,.., 0,.., 1

0 ( 1) ,h

p q

q k h q Q p h

q p z S S
= + = = −

≤ − −∑ ∑ ∑  

to the previous inequality, we obtain the desired inequality.  

Proposition 5.2 The inequalities (5.7a/b) are implied by the linear programming relaxation of MPQ. 

Proof: The proof follows from the two previous lemmas and transitivity.   , 

Finally, consider the inequalities  

1 ( 3)  + 2  +  (1, ) ( \ ( {1, }), )     ( , ) ,  , 1, \{1, , }ij ij if Q x x x P x V P j i i j A i j P V i j≤ − + ∪ ∈ ≠ ⊆   (5.8a) 

1 3   2  ( ,1) ( , \ ( {1, }))   ( , ) ,  , 1, \{1, , }ij ij jf x x x P x j V P i i j A i j P V i j≥ − − − ∪ ∈ ≠ ⊆   (5.8b) 

Proposition 5.3: The inequalities (5.8a/b) are implied by the linear programming relaxation of the 

MPQ* model. 

Proof: As before, we will present the proof only for the upper bound case. The proof is similar to the 

proof of Proposition 5.1 for the case with k = 2. In this proof we will let S’ = {i} and S = {j}, and we will 

use constraints (3.1) instead of the MPQ equations for h > 1.  

By using the Lemma 1 for k = 2, S’ = {i}  and S = {j}, we obtain: 

2 3 ( 3)  + 2 .ij ij ij ijf Q x z z≤ − +  

Using (3.1) to bound above 3

ijz  gives 

3 2 2 2

\{1, } \( {1, })

.ij ki ki ki

k V i k P k V P i

z z z z
∈ ∈ ∈ ∪

≤ = +∑ ∑ ∑   

Then, by using, the MPQ equations for h = 1 we obtain 

 

2 1

1

2 1

1

2 2ij i

ki k

k P k P

z z

z z
∈ ∈

≤

≤∑ ∑   

leading into 
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2 3 1 1 2

1 1

\( {1, })

2 2 .ij ij i k ki

k P k V P i

z z z z z
∈ ∈ ∪

+ ≤ + +∑ ∑  

Now, by adding the trivial inequality  

3 \( {1, })

0 h

ki

h k V P i

z
≥ ∈ ∪

≤∑ ∑  

and by using the equations linking the the ijx variables and the h

ijz  variables we obtain the result. , 

 


