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Abstract

We consider a dynamic capacitated facility location problem. Given a set of cus-
tomers with known demands for a single product, a set of facilities operating at the
beginning of the planning horizon, and a set of potential sites to locate new facilities,
the objective is to find the location-allocation plan that minimizes the overall costs
and satisfies the customer demands without violating the finite capacities of the op-
erating facilities. The problem is modelled as a mixed integer linear program with
binary variables associated with location decisions, that is, phase-in (phase-out) of
new (existing) facilities, and continuous variables representing the distribution flows
from the facilities to the customers. These two different types of decisions lead
to a natural separation of the variables, thereby making the problem an attractive
candidate for applying a decomposition technique. We propose a method based on
primal Benders decomposition, and improve its performance not only by introducing
valid inequalities that tighten the lower bound of the linear relaxation but also by
developing a heuristic approach that strengthens the usual Benders cuts. For ran-
domly generated problem instances, the computational results show that the new
Benders algorithm clearly outperforms standard mathematical programming soft-
ware, thus making the method attractive for decision-makers who can use it as a tool
to redesign their logistics networks and evaluate the impact of alternative network
configurations.

Keywords: dynamic facility location, Benders decomposition.

1 Introduction

Dynamic facility location problems (DFLP) deal with planning the location and/or size

of facilities over a given time horizon during which changes in customer demands and
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cost structures are expected to occur. Such problems arise in a wide variety of important

domains, including production-distribution system design (see e.g. Canel et al. [4]), supply

chain planning (see e.g. Arntzen et al. [2]), telecommunications network design (see e.g.

Chardaire et al. [5]), and public facility location (see e.g. Antunes and Peeters [1] for an

application to school network planning).

In general terms, the problem addressed by this paper can be described as follows:

given a set of customers whose locations and demands are assumed to be known for each

period of the planning horizon, a set of existing facilities already operating at the beginning

of the time horizon, and a set of potential sites where new facilities can be established,

it is required to determine which facilities should be used during each period so that the

overall costs, including facility location and operation costs as well as distribution costs, are

minimized subject to satisfying customer demands without exceeding the capacity of each

operating facility in every period. Observe that the location and time-phasing decisions

concern not only the phase-in of new facilities, as in classical location problems, but also

the phase-out of initially existing facilities. This allows to model situations in which a set of

facilities is already in place but is inappropriate to cope with changing market conditions.

As a result, the network structure needs to be reorganized or redesigned. Triggered by

the globalization of the economy and fierce competition in the marketplace, companies

face the growing challenge to constantly evaluate and reconfigure the structure of their

logistics networks as well as the strategies for providing a desired customer service at the

lowest possible cost. Hence, changing economic conditions compel companies to include

the effect of the future time dimension in their location analysis, thereby justifying the

need for dynamic facility location models.

Dynamic facility location has been a field of recurring interest as demonstrated by the

recent surveys by Klose and Drexl [18], Owen and Daskin [24], and ReVelle and Eiselt [25].

The problem to be addressed in this paper generalizes the dynamic uncapacitated facil-

ity location problem (DUFLP) studied by Van Roy and Erlenkotter [30]. The authors

developed a branch-and-bound procedure with lower bounds obtained with a heuristic

dual ascent method, and upper bounds constructed with the dual solutions and the com-

plementary slackness conditions. The phase-in version of the DUFLP was examined by

Frantzeskakis and Watson-Gandy [11] who proposed a branch-and-bound method. Lower

bounds were determined by solving in each node of the search tree a subproblem with

dynamic programming applied to a reduced state space. Hormozi and Khumawala [15]
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also developed an exact algorithm for the DUFLP combining mixed integer and dynamic

programming methods. Single-period solutions are first obtained for each period and the

optimal sequence for the complete planning horizon is later determined by applying dy-

namic programming. This technique was later extended by Canel et al. [4] to the DFLP

with multiple commodities and capacitated facilities. The proposed algorithm was applied

to a single instance of reduced size and reflects the main drawback of most exact solution

approaches, namely their prohibitive time and memory requirements which do not make

them attractive to solve realistically sized problems. An exception to this seems to be the

method developed by Dogan and Goetschalckx [10] for the configuration of the production-

distribution system of a real-life manufacturer of cardboard packages. The authors applied

Benders decomposition to a network design problem with multiple commodities and differ-

ent types of facilities (production plants and warehouses) with limited capacities. The goal

is to find a facility configuration that is robust enough to cope with changes that are ex-

pected to occur in all parameters during the planning horizon. The location decisions are,

however, static in the sense that they are made at the beginning of the time horizon. For

the selected facility configuration, a production and distribution plan is then determined

for each planning period.

The limited success of exact methods has prompted the development of heuristic proce-

dures, many of which have performed very well in their search for near-optimal solutions.

Among the various strategies available in the literature, Chardaire et al. [5] find feasible

solutions for the DUFLP by simulated annealing and generate lower bounds by Lagrangean

relaxation. The Lagrangean relaxation technique was also used by Shulman [28] to solve

a special version of the capacitated DFLP. The author considers that a new facility can

be established in each potential site with various modules of different sizes. This prob-

lem arises, for example, in the design and expansion of telecommunication networks where

different types of concentrators are to be installed in a node, and the size of each node

can be increased during the planning horizon through the installation of additional capac-

ity. Shulman [28] also used Lagrangean relaxation to convert infeasible solutions of the

relaxed problem into feasible solutions. Modular capacities were also considered by An-

tunes and Peeters [1] for facility location, expansion and reduction in the context of school

network planning. The problem was solved by simulated annealing. Hinojosa et al. [13]

applied Lagrangean relaxation to a problem combining dynamic aspects with multi-stage

facility location in a multi-commodity distribution network. Velten [31] later extended the
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proposed model to incorporate inventory decisions. Recently, Dias et al. [9] proposed a

primal-dual heuristic for a capacitated version of the DFLP allowing opening and closing

facilities more than once during the planning horizon. Finally, Saldanha da Gama [26]

developed a heuristic approach for the problem to be examined in this paper. It starts

by generating lower bounds with a dual heuristic procedure. Feasible primal solutions are

then obtained using the dual solutions and improving them further by local search. An

extensive computational study has indicated that the quality of the final feasible solutions

is influenced by the quality of the lower bounds previously obtained. Although on average

good solutions could be found, in some extreme cases the quality of the final solutions

deteriorated as a result of having derived them from poor lower bounds. The contribution

of this paper is to overcome these difficulties by proposing an efficient alternative method.

Since the structure of the capacitated DFLP is well suited for a primal decomposition

approach such as Benders decomposition, as will be shown, we will focus on applying this

technique to our problem. To the best of our knowledge, this is the first research effort to

examine the benefits of solving a dynamic phase-in/phase-out facility location problem by

Benders decomposition.

The remainder of the paper is organized as follows. Section 2 presents a mathematical

formulation of the problem as a mixed integer linear program while Section 3 describes

the solution methodology. The results of an extensive computational study are reported in

Section 4. Finally, conclusions and directions for further research are given in Section 5.

2 Problem formulation

Given a set of facilities already in place, a set of possible sites for establishing new facilities

and a set of customers with known demands throughout a pre-specified time horizon,

the dynamic capacitated facility location problem (DCFLP ) consists in determining the

location plan that describes when and where the phase-in of new facilities and the phase-

out of existing facilities should take place during the planning horizon. In particular, the

location-allocation plan that minimizes the overall costs for meeting the customer demands

in each period without exceeding the maximum capacities of the facilities in operation is

sought. The following notation is used in formulating the DCFLP .

T : index set of periods in the planning horizon with n =| T |

Ic : index set of locations at which initially existing facilities may be closed
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Io : index set of locations at which new facilities may be opened

I : index set of all facility locations, I = Ic ∪ Io, Ic ∩ Io = ∅

Qi : capacity of facility i ∈ I

J : index set of customer locations

The following parameters are included in the model:

djt : demand of customer j ∈ J in period t ∈ T

cijt : variable cost of serving all demand of customer j ∈ J in period t ∈ T

by facility i ∈ I

Fit : fixed cost for opening or closing facility i ∈ I in period t ∈ T

For each existing facility i ∈ Ic, Fit includes not only the fixed charge for closing the facility

at the end of period t but also the overall costs resulting from having kept the facility in

operation from period 1 through period t. Analogously, for each new location i ∈ Io, Fit

comprises the fixed cost for opening facility i at the beginning of period t as well as all

future operating costs until the end of period n.

The following decision variables are defined:

xijt : fraction of demand of customer j ∈ J served by facility i ∈ I in period t ∈ T

zit =

{
1 if the configuration of facility i ∈ I changes in period t ∈ T

0 otherwise

Since any existing facility i ∈ Ic is initially operating, a configuration change amounts

to closing the facility at the end of a given period. It is assumed that it is not possible

to close such a facility at the end of the last period n since the impact of this decision

would only be noticeable after the planning horizon. Hence, zin = 0 for every i ∈ Ic.

Concerning the setup of new facilities, since any site i ∈ Io is not used at the beginning of

the location study, changing its configuration corresponds to opening a new facility there

at the start of a given period. The establishment of new facilities is typically a time-

consuming project due to preparation activities such as facility construction, equipment

supply and employee training. Therefore, it is assumed that new facilities can only start

operating at the beginning of the second period or later, and so zi1 = 0 for every i ∈ Io.

The DCFLP is formulated as a mixed integer linear program as follows.
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Min
∑
i∈I

∑
j∈J

∑
t∈T

cijt xijt +
∑
i∈Ic

[
n−1∑
t=1

Fitzit + Fin

(
1−

n−1∑
τ=1

ziτ

)]
+
∑
i∈Io

n∑
t=2

Fitzit (1)

subject to∑
i∈I

xijt = 1 j ∈ J, t ∈ T (2)

∑
j∈J

djt xijt ≤ Qi

(
1−

t−1∑
τ=1

ziτ

)
i ∈ Ic, t ∈ T (3)

∑
j∈J

djt xijt ≤ Qi

t∑
τ=2

ziτ i ∈ Io, t ∈ T (4)

n−1∑
t=1

zit ≤ 1 i ∈ Ic (5)

n∑
t=2

zit ≤ 1 i ∈ Io (6)

xijt ≥ 0 i ∈ I, j ∈ J, t ∈ T (7)

zit ∈ {0, 1} i ∈ I, t ∈ T (8)

The objective function (1) minimizes the sum of all fixed and variable costs. Con-

straints (2) require the demand at each customer location to be satisfied throughout the

planning horizon. Constraints (3) and (4) ensure that the total demand served by each

facility in each period does not exceed the available capacity. Inequalities (5) and (6) allow

the configuration of each facility to change at most once during the planning horizon. This

means that once an existing (new) facility is closed (opened) it will not be later re-opened

(closed). Finally, constraints (7) and (8) impose non-negativity and integrality conditions.

The DCFLP is NP-hard since for n = 1 and infinite capacities the problem reduces

to the classic uncapacitated facility location problem which is known to be NP-hard,

Jacobsen [16]. Facility location models are frequently enhanced with valid inequalities. The

most common inequalities are those stating that customer demands can only be satisfied

from open facilities. In the static case, the inclusion of these inequalities in both the

uncapacitated and capacitated variants leads to strong formulations, meaning that the

lower bounds of the corresponding LP-relaxations become much tighter in the presence of

these constraints (see Klose and Drexl [18], Leung and Magnanti [21]). Their extension to
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the DCFLP is straightforward:

xijt ≤ 1−
t−1∑
τ=1

ziτ i ∈ Ic, j ∈ J, t ∈ T (9)

xijt ≤
t∑

τ=2

ziτ i ∈ Io, j ∈ J, t ∈ T (10)

Observe that the above constraints are redundant since the values of the location vari-

ables zit are restricted to 0 or 1 by (8).

In static capacitated facility location problems the inclusion of a so-called total de-

mand constraint also seems to very useful while solving these problems by a decomposition

scheme. This condition ensures that the available capacity at the operating facilities is

enough to meet the total customer demands. Its extension to the DCFLP is also straight-

forward.∑
i∈Ic

Qi

(
1−

t−1∑
τ=1

ziτ

)
+
∑
i∈Io

Qi

(
t∑

τ=2

ziτ

)
≥
∑
j∈J

djt t ∈ T (11)

As will be shown in the next section, primal decomposition can highly benefit from

including constraints (9)–(11) in the DCFLP .

3 Benders decomposition

Discrete facility location problems are attractive candidates for decomposition techniques

since they contain two types of inherently different decisions: on the one hand, the yes/no-

decision where to locate facilities (variables zit), and on the other hand how best to allocate

customer demands to the selected facilities (variables xijt). Once the discrete-choice site

selection has been made, the resulting linear program becomes much simpler to solve.

Benders decomposition is a well-known technique, originally introduced by Benders [3],

which exploits the special structure of mixed integer linear problems. Decoupling the

binary decision variables from the continuous variables in the DCFLP leads to a master

problem which fixes the startup and shutdown schedules of the facilities. The continuous

variables are placed in a subproblem whose solution sends marginal information to the

master problem regarding the “goodness” of the proposed startup and shutdown schedule.

This information is provided by the dual variables of the subproblem which are used to

create in each iteration a so-called Benders cut that is added to the master problem.
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The solution of the latter problem suggests a new startup and shutdown schedule. The

procedure continues until convergence to the optimal solution is attained (see Lasdon [19]

and Magnanti and Wong [22] for a detailed description of the method).

Benders decomposition has been successfully applied to static facility location problems,

see e.g., Geoffrion and Graves [12], Holmberg [14], Klose [17], Lee [20] and Wentges [32].

Recently, Cordeau et al. [6] proposed the technique to solve a comprehensive problem aris-

ing in the design of logistics networks. Van Roy [29] combined Benders decomposition

with Lagrangian relaxation to exploit simultaneously the primal and dual structures of the

static capacitated facility location problem. The resulting method is known as cross de-

composition. To the best of our knowledge, Benders decomposition has never been applied

to a phase-in/phase-out DFLP before. Therefore, this paper presents a first contribution

in that direction and highlights the benefits of the technique.

3.1 Decomposition scheme

Consider formulation (1)-(8) with the valid inequalities (9)-(11). For a given feasible facility

configuration (i.e., a feasible z vector), the resulting subproblem reduces to an allocation

problem involving only the distribution variables x. Let SPz denote this subproblem for a

given realization of z. The DCFLP can be easily stated in a compact form involving the

subproblem SPz:

Min
z ∈ Z

Min
x≥ 0

{
(1) subject to (2), (3), (4), (7), (9), (10)

}
︸ ︷︷ ︸

SPz

(12)

with

Z = {zit, i ∈ I, t ∈ T : (5), (6), (8), (11) }

The set Z includes all feasible facility configurations of the DCFLP . Multiplying con-

straints (3), (4), (9) and (10) by (−1), and associating dual variables λ = {λjt : j ∈ J, t ∈
T} to (2), ν = {νit : i ∈ I, t ∈ T} to (3) and (4), and π = {πijt : i ∈ I, j ∈ J, t ∈ T} to (9)

and (10), the dual problem of SPz - denoted by DSPz - can be formulated as:

with

K =
∑
i∈Ic

[
n−1∑
t=1

Fit zit + Fin

(
1−

n−1∑
τ=1

ziτ

)]
+
∑
i∈Io

n∑
t=2

Fit zit
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Max K +
∑
j∈J

∑
t∈T

λjt −
∑
i∈Ic

∑
t∈T

νit Qi

(
1−

t−1∑
τ=1

ziτ

)
−
∑
i∈Io

∑
t∈T

νit Qi

( t∑
τ=2

ziτ

)
−
∑
i∈Ic

∑
j∈J

∑
t∈T

πijt

(
1−

t−1∑
τ=1

ziτ

)
−
∑
i∈Io

∑
j∈J

∑
t∈T

πijt

( t∑
τ=2

ziτ

)
(13)

subject to

λjt − djt νit − πijt ≤ cijt i ∈ I, j ∈ J, t ∈ T (14)

νit ≥ 0 i ∈ I, t ∈ T (15)

πijt ≥ 0 i ∈ I, j ∈ J, t ∈ T (16)

The polyhedron defined by constraints (14)-(16) does not depend on the binary variables z

which only appear in the objective function of DSPz. Observe that the primal subprob-

lem SPz can be decomposed into n transportation problems, one for each period, which

often have a high level of degeneracy. This may result in multiple optimal solutions for the

above dual subproblem DSPz. This characteristic will be later explored to improve the

performance of the proposed method (see Section 3.2).

Denoting the set of extreme points of (14)-(16) by ΛΠV , problem (12) can be rewritten

as a minimax problem as follows:

Min
z ∈ Z

{
Max (13) : (λ, π, ν) ∈ ΛΠV

}
(17)

Since z ∈ Z, there is enough capacity at the operating facilities to serve all customer

demands. Hence, there exists a vector x satisfying all constraints of the subproblem SPz.

Moreover, given that each xijt ∈ [0, 1] and all costs in the objective function of SPz are

non-negative, it follows that the subproblem is always feasible and bounded. Consequently,

the set ΛΠV is always bounded and as a result, it is not necessary to consider the extreme

rays of the set defined by (14)-(16).

The linearization of problem (17) leads to the so-called Benders master problem:

Min ρ (18)

subject to

ρ ≥ (13) (λ, π, ν) ∈ ΛΠV (19)

z ∈ Z (20)

where inequalities (19) are known as Benders cuts or optimality cuts. Since even in a
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problem of moderate size the cardinality of ΛΠV is usually very high, the number of Ben-

ders cuts is usually huge. However, not all of them will be binding at an optimal solution.

In general, optimality can be obtained by solving a relaxed master problem, that is, by

solving the above problem (which is equivalent to the DCFLP ) with only few constraints

of type (19) (see Magnanti and Wong [23] and Van Roy [29]). Starting with only a few

(or no) extreme points, the Benders method iterates between a relaxed master problem

and the dual subproblem. In each iteration, a relaxed Benders master problem (18)-(20) is

solved with the set of cuts available at that iteration. The solution obtained corresponds

to a feasible facility configuration z ∈ Z, that is, a startup and shutdown schedule for

the facilities throughout the planning horizon. Moreover, it provides a lower bound on

the optimal solution value of the original problem DCFLP . This schedule is used in the

dual subproblem DSPz to obtain a distribution plan for servicing the customer demands.

By solving the DSPz, an extreme point of ΛΠV can be identified which leads to a new

Benders cut of the form (19) that is added to the relaxed master problem. The algorithm

then proceeds to a new iteration. Observe that an upper bound on the optimal solution

value of the DCFLP is available in every iteration (the optimal value of DSPz is equal

to the optimal value of SPz). The process continues until the lower and upper bounds are

sufficiently close.

Different relaxed master problems may have the same optimal solution. If this happens,

a loop is created in the algorithm. To avoid this, in each iteration an improvement cut

is enforced in the relaxed master problem stating that the optimal value of the current

relaxed master problem must be strictly greater than the optimal value of the previous

relaxed master problem.

The Benders algorithm starts with a feasible facility configuration. A trivial feasible

solution for the DCFLP corresponds to setting zit = 0, for i ∈ Ic, t ∈ T , zi2 = 1 for

i ∈ Io, and zit = 0 for i ∈ Io, t ∈ T \ {2}. In other words, all initially existing facilities

remain in operation throughout the planning horizon whereas a new facility is opened

in every candidate site at the beginning of the second period. Other possibilities for

generating initial feasible solutions were also investigated, namely, by solving the relaxed

master problem without cuts and using a heuristic procedure especially developed for the

DCFLP . However, an extensive computational study has shown that these alternative

procedures were less effective and required larger computation time (see Saldanha da Gama

and Silva [27] for further details).
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Benders decomposition is widely known for its high computational effort, which arises

mainly from the difficulty in solving the relaxed master problem in each iteration. This

is due to the fact that not only a mixed integer linear program has to be solved in each

iteration but also the size of the problems gradually increases through adding a new con-

straint (Benders cut) per iteration. Therefore, a key factor in improving the efficiency of

the method concerns the number of Benders cuts needed to reach optimality. Clearly, the

greater the number of cuts, the greater the number of relaxed master problems that must

be solved. To overcome this difficulty, improved cuts can be derived that make use of the

multiplicity of optimal solutions of the dual subproblem DSPz. Observe that having mul-

tiple dual optimal solutions leads to a number of valid alternative Benders cuts. However,

one cut may be dominated by another in the neighborhood of the optimal solution. This

characteristic was explored by Magnanti and Wong [23] and Van Roy [29] for static facility

location problems. In the next section, strategies for finding enhanced cuts, that is, cuts

that lead to better lower bounds and expedite convergence of the Benders algorithm are

introduced.

3.2 Strategies for strengthening Benders cuts

Consider the formulation of the DCFLP with the valid inequalities (9)-(11). The usual

Benders cut has the form (19) which is equivalent to

ρ ≥ K +
∑
j∈J

∑
t∈T

λjt −
∑
i∈Ic

∑
t∈T

(
νit Qi +

∑
j∈J

πijt

) (
1−

t−1∑
τ=1

ziτ

)
−

∑
i∈Io

∑
t∈T

(
νit Qi +

∑
j∈J

πijt

) (
t∑

τ=2

ziτ

)
(21)

The above inequality can be strengthened by increasing its right-hand side. The latter is

affected by the values of the dual variables λ, π and ν of the subproblem DSPz, which in

turn are associated with some feasible facility configuration z ∈ Z.

If 1 −
∑t−1

τ=1 ziτ = 0 for a certain pair (i, t), i ∈ Ic and t ∈ T (which means that

ziτ = 1 for some τ = 1, . . . , t − 1), then the corresponding coefficient νit Qi +
∑

j∈J πijt

may be modified while maintaining the dual feasibility. In this case, 1 −
∑t−1

τ=1 ziτ is still

equal to 0 if we replace t − 1 by t, t + 1, . . . , n − 1. Therefore, not only the values of the

dual variables νit and πijt, j ∈ J can be altered but also those of the variables νiτ and

πijτ for every τ = t + 1, · · · , n and j ∈ J . Similarly, if
∑t

τ=2 ziτ = 0 for a given pair
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(i, t), i ∈ Io and t ∈ T , then the corresponding coefficient in (21) can be modified. Note

that if zit = 1 for some pair (i, t), then the configuration of the facility cannot change

in any other period. In particular, the relation zi2 + zi3 + . . . + zit−1 = 0 holds and as a

result, the dual variables νiτ and πijτ can be changed for every τ = 2, . . . , t− 1 and j ∈ J .

Finally, if zit = 0 for every i ∈ Io and t ∈ T this indicates that all dual variables may have

their values modified. Summarizing, to determine the best dual values associated with the

corresponding coefficients in (21), the following linear program is solved for every pair (i, t)

such that the corresponding coefficient can be changed:

Min νit Qi +
∑
j∈J

πijt (22)

subject to

λjt − djt νit − πijt ≤ cijt j ∈ J (23)

νit ≥ 0

πijt ≥ 0 j ∈ J

The solution of each problem guarantees that the new values of the dual variables are

feasible for DSPz. Knowing that the π variables are non-negative, that they must satisfy

inequalities (23) and that their values are to be minimized according to (22), it follows

that each of the above problems can be rewritten in a condensed form denoted by CPit:

Min
νit≥0

νit Qi +
∑
j∈J

max {0, λjt − djt νit − cijt} (24)

Solving CPit to optimality for each pair (i, t) may be time consuming when the number of

pairs is very large. This was confirmed by our computational study when using standard

mathematical programming software, namely ILOG CPLEX 9.0 [8]. Therefore, a heuristic

procedure is proposed to find good solutions of CPit with reduced computational effort.

The procedure starts with the optimal solution of the dual of subproblem SPz without

constraints (9) and (10). By doing so, we are actually setting the π variables in (21) to 0.

The strategy to be followed consists in decreasing the values of some ν variables and at

the same time increasing some π variables. Observe that for a given pair (i, t), if ∆ units

(∆ > 0) are subtracted from νit then the first term of (24) decreases ∆ Qi units, whereas

the second term increases ∆
∑

j∈J :λjt−djtνit−cijt≥0 djt units. Hence, it only compensates to

decrease νit if Qi >
∑

j∈J :λjt−djtνit−cijt≥0 djt.
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Consider

kj =
λjt − cijt

djt

, j ∈ J (25)

and let kj1 > kj2 > . . . > kjp > kjp+1 > . . . > kjm denote a non-increasing sequence where

kjp is the smallest positive kj value (if any exists) and m ≤| J |. The following result holds

for the optimal solution of the dual subproblem (13)-(16) (without the π variables).

Proposition 3.1 If the optimal solution of the dual of subproblem SPz without constraints

(9) and (10) has νit > 0 for a given pair (i, t), i ∈ I and t ∈ T , then νit = kj1.

Proof: Since π = 0 and the feasibility of νit is imposed by conditions (14), it follows that

the inequality λjt − djt νit ≤ cijt must hold for every j ∈ J . Hence, νit ≥ kj, j ∈ J .

The equality holds due to the fact that the coefficients of νit in the dual objective

function (13) are non-positive. Therefore, if some νit were greater than kj1 we could

set it equal to kj1 without losing feasibility and increasing the dual objective function.

To solve (24) for a given pair (i, t), let us start by assigning kj1 to νit. If kj1 ≤ 0

then actually νit = 0 and no decrease should be allowed in this variable. Otherwise, we

iteratively try to assign the values kj2 , . . . , kjp , 0 to νit. The procedure ends when the

decrease obtained in the first part of (24) is smaller than the increase in the second part.

For 1 ≤ r ≤ p define

δr =

{
kjr − kjr+1 if r < p

νit if r = p

The following result holds for CPit with i ∈ I and t ∈ T .

Proposition 3.2 Suppose that νit = kjr for some 1 ≤ r ≤ p. If Qi >

r∑
`=1

dj`t and νit is

decreased by δr then the objective function (24) decreases by δr

(
Qi −

r∑
`=1

dj`t

)
.

13



Proof: Since νit = kjr for some r (1 ≤ r ≤ p) it follows that νit ≤ kj`
which by (25) leads

to λj`t − dj`t νit − cij`t ≥ 0 for every ` = 1, . . . , r. Following a similar reasoning we

conclude that λj`t−dj`t νit−cij`t < 0 for every ` = r+1, . . . ,m. If νit is decreased by δr

then the term max {0, λj`t−dj`t νit−cij`t} will actually increase by δr dj`t, ` = 1, . . . , r.

Consequently, the second term in (24) will grow by δr

∑r
`=1 dj`t. In the case that

r < p this decrease in νit will bring λjr+1t− djr+1t νit− cijr+1t up to zero but the terms

λj`t − dj`t νit − cij`t will remain negative for ` = r + 2, . . . ,m. If r = p, a decrease

of νit by δr will keep all the terms λj`t − dj`t νit − cij`t negative for ` = r + 1, . . . ,m.

In both cases no further increase will occur in the second term of (24). Therefore,

the global change in (24) induced by decreasing νit by δr is −δr Qi + δr

∑r
`=1 dj`t. If

Qi >
∑r

`=1 dj`t this change is negative, thus leading to a decrease in the objective

function (24).

Algorithm 3.1 summarizes the procedure for modifying a variable νit (and πijt, j ∈ J) for

a given pair (i, t), i ∈ I, t ∈ T . It makes use of the criteria established by Proposition 3.2.

Note that the procedure is applied to the values of νit initially obtained by solving the dual

of problem SPz without considering constraints (9) and (10).

Algorithm 3.1 Procedure to modify νit and πijt, j ∈ J

Set πijt = 0 for each j ∈ J

Calculate kj1 , kj2 , . . . , kjp , . . . , kjm

r = 1
while νit > 0 and r ≤ p do

if Qi >

r∑
`=1

dj`t then

νit = νit - δr

for ` = 1, . . . , r do
πij`t = πij`t + δr dj`t

r = r + 1
else

Stop

Algorithm 3.2 describes the complete strategy for enhancing an ‘usual’ cut, that is, a

Benders cut.

In each iteration of the Benders algorithm two dual subproblems have to be solved:

the first is problem (13)-(16) whose solution is considered for building the ‘usual’ cut; the

second is the same problem but without the dual variables π (as a result of removing

constraints (9) and (10) from the formulation of DCFLP ). The optimal solution of the

14



Algorithm 3.2 Strategy for enhancing the ‘usual’ cut

Solve the dual problem of SPz without constraints (9) and (10)
for i ∈ Ic do

while τ exists such that ziτ = 1 do
for t = τ + 1, . . . , n do

if νit > 0 then
Modify νit, πijt, j ∈ J (Algorithm 3.1)

for i ∈ Io do
if
∑n

τ=2 ziτ = 0 then
for t = 2, . . ., n do

if νit > 0 then
Modify νit, πijt, j ∈ J (Algorithm 3.1)

else
while τ exists such that ziτ = 1 do

for t = 2, . . . , τ − 1 do
if νit > 0 then

Modify νit, πijt, j ∈ J (Algorithm 3.1)

latter problem is needed to initialize the values of variables ν in order to use Algorithm 3.1

to enhance the cut. At first glance it may seem that solving two dual subproblems will add

to the overall computational effort. This situation can be handled by considering a slightly

different relaxed master problem compared to the one suggested in Section 3.1. By simply

removing constraints (9) and (10) from DCFLP , the resulting master problem is actually

the same as (18)-(20) but without variables π. Note that this can be done because the

removed constraints are redundant. Hence, in this case the Benders algorithm remains the

same as well as Algorithms 3.1 and 3.2. The only difference is that the first statement in

Algorithm 3.2 is no longer necessary. As will be shown in the following section, this variant

of the strategy for strengthening the ‘usual’ cut performed in general better in terms of

overall computation time.

4 Computational results

In this section we report the results obtained with the proposed Benders decomposition

method on a set of randomly generated test instances. In the next section the data gener-

ation process is described while Section 4.2 is dedicated to the presentation and discussion

of the computational results.

15



4.1 Data generation

In total, 54 instances were randomly generated with varying sizes according to the number

of time periods, the number of facilities, and the number of customers. Table 1 indicates the

choices that were considered for these parameters. Using these combinations, we obtained

instances with a number of binary variables between 40 and 700, a number of continuous

variables between 1000 and 75000, and a number of constraints ranging from 165 to 2315.

Thus, small and medium-sized test instances were created.

| T | | I | | Ic | | J |
5, 10, 15 10 3, 5, 8 20, 50, 100

5, 10, 15 20 8, 10, 16 50, 100

5, 10, 15 50 20, 25, 45 100

Table 1: Size of basic test instances.

Regarding the generation of all other parameters, Table 2 summarizes the relevant

information.

Parameter Value

Qi, i ∈ I U [100, 300]

fit, i ∈ Ic, t ∈ T Qi × U [8, 12.5] (1 + U t−1[0, 10]%)

fit, i ∈ Io, t ∈ T \ {1} Qi × U [8, 12.5] (1 + U t−1[0, 10]%)

git, i ∈ Ic, t ∈ T \ {n} Qi × U [7, 25] (1 + U t−1[0, 10]%)

hit, i ∈ Io, t ∈ T \ {1} Qi × U [9, 27] (1 + U t−1[0, 10]%)

djt, j ∈ J, t ∈ T [1, 1
|J |
∑

i∈I Qi] (1 + U t−1[−10, 10]%)

cijt, i ∈ Ic, j ∈ J, t ∈ T l2(i, j)× djt (1 + U t−1[−10, 10]%)

cijt, i ∈ Io, j ∈ J, t ∈ T \ {1} l2(i, j)× djt (1 + U t−1[−10, 10]%)

Table 2: Parameters selected for the random generation of the test instances.

We denote by U [α, β] the random generation of numbers in the interval [α, β] according

to a Uniform distribution. Entries of the type U [α, β](1+U t−1[γ, δ]%) indicate that values

between α and β were drawn from a Uniform distribution in period t = 1 (t = 2 if i ∈ Io).

In each subsequent period t ∈ T \ {1} (t ∈ T \ {2} if i ∈ Io) the generated value was

obtained from the current value applying a variation randomly generated according to a

Uniform distribution in [γ, δ]. The fixed facility costs Fit were determined as follows:
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Fit =


t∑

τ=1

fiτ + git if i ∈ Ic, t ∈ T

n∑
τ=t

fiτ + hit if i ∈ Io, t ∈ T \ {1}

where fiτ denotes the fixed cost of operating facility i ∈ I in period τ , git indicates the fixed

cost of closing the initially existing facility i ∈ Ic at the end of period t (note that gin = 0),

and hit represents the fixed cost of opening a new facility in site i ∈ Io at the beginning

of period t. Table 2 describes the parameters of the Uniform distributions selected for the

various types of fixed costs considered. Observe that the calculation of these costs depends

on the capacity of each facility. Regarding the generation of the facilities and the customer

locations, a 10×20 rectangle was considered and divided into | I | longitudinal stripes, each

having dimension 10
|I|×20. In each stripe, one site corresponding either to an existing facility

or to a new site was randomly positioned. The customer locations were randomly positioned

in the overall rectangle. Using the coordinates of each facility-customer pair (i, j), the

corresponding Euclidean distance, denoted by l2(i, j), was calculated and multiplied by

the customer demand to obtain the cost of serving customer j from facility i in the first

period, j ∈ J , i ∈ I. Hence, the distribution costs cijt satisfy the triangle inequality.

Concerning the generation of these costs in the following periods, fluctuations between

−10% and 10% were considered as shown in Table 2. Further details about the problem

characteristics are described in Saldanha da Gama [26].

4.2 Summary of results

The proposed Benders algorithm was implemented in C++. In each iteration, the re-

laxed master problem was solved with the standard mathematical programming software

ILOG CPLEX 9.0 [8] embedded in ILOG CONCERT [7], a C++ interface. For compar-

ison purposes, the branch-and-bound procedure of ILOG CPLEX 9.0 was also used to

solve each problem instance. The formulation (1)-(8) of the DCFLP with the additional

constraints (11) was used. Tests with the formulations defined by (1)-(8), (1)-(11), and

(1)-(10) were also performed but required larger computational effort and therefore, will

not be discussed here (see Saldanha da Gama and Silva [27] for further details). CPLEX

was stopped either when an integer solution within 0.1% of optimality was identified or

when a time limit of twelve hours was attained. The 0.1% tolerance is acceptable in real-
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life situations due to the fact that there is always an error associated with data collection.

The same tolerance was set in the Benders algorithm. Cordeau et al. [6] refer an error of

at least 1% when estimates for costs, demands and capacities are collected. Finally, all

tests were performed on a Pentium IV PC with a 3.2 GHz processor and 1 GB of RAM.

Tables 3 and 4 display the results obtained. The first four columns indicate the choices

made for the parameters | I |, | J |, | T | and | Ic |. Each table is divided into three parts,

each corresponding to a set of test instances having the same total number of facilities and

customers. In these tests the length of the planning horizon and the number of initially

existing facilities were varied. The fifth column indicates the CPU time (in seconds)

required by CPLEX to solve the corresponding test instance to optimality. The remaining

four columns refer to two alternative variants of the Benders algorithm. The first variant

- Strategy 1 - corresponds to solving two subproblems in each iteration, whereas in the

second variant - Strategy 2 - one single dual subproblem is solved in each iteration (recall

Section 3.2). For each variant, the overall CPU time (in seconds) and the total number of

valid constraints (‘# cuts’) added to the relaxed master problem are indicated.

From Tables 3 and 4 it is clear that the Benders algorithm with the second strategy

outperforms the other two procedures with respect to the computation time. The difference

becomes more significant when the number of time periods increases (see, for example, the

instance with 50 facilities, 100 customers, 10 periods, and 25 existing facilities in Table 4).

The results also show that the performance of the three procedures is more sensitive to

the number of time periods than to the number of customers. This is not surprising since

an increase in | T | leads to an increase in the number of binary variables. The same does

not occur when | J | grows.

Regarding the number of cuts, Strategies 1 and 2 are comparable, which means that

solving only one dual subproblem in each iteration of the Benders algorithm (Strategy 2)

does not have a major impact on the number of cuts generated. At first glance, this may

seem surprising because in the first strategy additional dual information is considered and

therefore, one could expect stronger cuts. However, the results show that in some way this

information does not always help the enhancement procedure by actually yielding improved

cuts. In only five instances did Strategy 1 produce less cuts than Strategy 2. Nevertheless,

in three out of these five cases, Strategy 2 was faster.
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CPLEX Strategy 1 Strategy 2

| I | | J | | T | | Ic | CPU (s) CPU (s) # cuts CPU (s) # cuts

3 <1 <1 1 <1 1

5 5 <1 <1 3 <1 3

8 <1 <1 3 <1 3

3 <1 <1 4 <1 3

10 20 10 5 <1 <1 4 <1 3

8 <1 <1 3 <1 2

3 7 25 6 1 3

15 5 544 832 7 2 3

8 <1 <1 3 <1 2

3 <1 <1 2 <1 1

5 5 <1 <1 3 <1 1

8 <1 <1 5 <1 3

3 6 1 3 <1 2

10 50 10 5 <1 <1 3 2 2

8 6 7 9 <1 3

3 85 27 8 7 3

15 5 90 12 4 3 3

8 296 97 9 19 3

3 <1 <1 3 <1 2

5 5 <1 <1 1 <1 1

8 <1 <1 2 <1 1

3 14 2 4 <1 3

10 100 10 5 5 2 3 <1 2

8 1 1 2 <1 1

3 104 4 4 2 3

15 5 319 25 5 2 3

8 116 5 5 1 3

Table 3: CPU time (seconds) for test instances with 10 facilities

Finally, it should be noted that a significant part of the CPU time required to run a test

instance with Benders decomposition is spent on solving in each iteration a relaxed master

problem, which is an integer linear program that we solved with CPLEX. However, even

without tackling the master problems with a specially tailored method, the developed Ben-

ders algorithm clearly outperforms standard mathematical programming software. Note

that CPLEX could not solve five of the largest test instances (see Table 4) within the pre-

specified time limit of twelve hours (43200 s). Nevertheless, the gaps reported by CPLEX

upon termination were already very small, varying between 0.1% and 1%.
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CPLEX Strategy 1 Strategy 2

| I | | J | | T | | Ic | CPU (s) CPU (s) # cuts CPU (s) # cuts

8 <1 <1 2 <1 1

5 10 <1 <1 2 <1 1

16 1 2 1 <1 3

8 46 19 8 1 3

20 50 10 10 154 160 10 <1 2

16 47 73 8 7 6

8 1202 191 12 245 3

15 10 848 2116 19 96 8

16 2808 1554 11 64 4

8 <1 2 5 <1 4

5 10 <1 1 3 <1 2

16 2 6 11 <1 3

8 74 12 6 2 3

20 100 10 10 34 17 9 2 3

16 151 31 9 5 5

8 383 118 7 10 4

15 10 >43200 9418 9 2487 7

16 4647 433 7 10 2

20 <1 3 2 <1 2

5 25 2 6 4 1 4

45 31 37 16 4 11

20 16516 113 6 326 28

50 100 10 25 >43200 1926 14 242 16

45 272 127 14 17 10

20 >43200 288 4 738 4

15 25 >43200 109 3 888 4

45 >43200 303 10 155 18

Table 4: CPU time (seconds) for test instances with 20 and 50 facilities

5 Conclusions

In this paper, a dynamic capacitated facility location problem was considered which in-

cludes not only phase-in location decisions (for setting up new facilities), as in classical

facility location problems, but also phase-out location decisions (for closing existing fa-

cilities) throughout a given time horizon. By using a mixed integer linear programming

model strengthened by a set of valid inequalities, and by exploiting the natural separation

of the binary facility configuration variables and the continuous distribution variables, a

primal Benders decomposition approach was developed to obtain optimal solutions within

acceptable computational effort. To the best of our knowledge this is the first contribu-
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tion towards applying such technique to solve dynamic phase-in/phase-out facility location

problems. To accelerate the convergence of the method, a heuristic procedure was proposed

to enhance the quality of the usual Benders cuts. This method makes use of the existence

of multiple optimal solutions of the dual subproblem, which means that a number of valid

alternative Benders cuts is available.

The computational experiments suggest that the proposed Benders decomposition ap-

proach is an efficient method that can be used for solving large facility location prob-

lems. The largest problems with 15 planning periods, 50 facilities and 100 customers were

solved within 5 minutes of CPU time whereas an off-the shelf solver like CPLEX could

not solve such problems within 12 hours. This significant reduction in computation times

was achieved even though the relaxed Benders master problems, which are integer lin-

ear problems, were solved with CPLEX. Hence, further research will be directed towards

the development of a new method that explores the special structure of these problems.

Meta-heuristics such as variable neighbourhood search seem to be a promising approach for

tackling the master problems. This step will increase the possibility to solve realistically

sized problems in a reasonable amount of time, and thus provide the decision-maker with

a tool to redesign the logistics networks and to re-evaluate alternative network configura-

tions on a regular basis. Another interesting direction for further research would be the

extension of the model and the solution method to handle cases with multiple products and

multiple echelons of facilities. Recently, Cordeau et al. [6] applied Benders decomposition

to a comprehensive, yet static, network design problem considering these aspects. Their

promising results encourage the generalization of our approach to this more complex class

of problems.
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