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Abstract

Every autumn, a research vessel carries out a sampling survey trip to
estimate the abundance of groundfish species of the Portuguese continen-
tal waters. The sampling operations are made at predefined geographical
locations, the fishing stations, within predefined multiple time windows.
The vessel route starts and ends at the port of Lisbon and must visit all
fishing stations. According to a predefined periodicity, the vessel must
enter a port to supply food, refuel and/or change crew. Given the geo-
graphical locations of the fishing stations/ports and the current weather
conditions, the objective is to minimize the total traveled distance and the
completion time. We present a Mixed Integer Linear Program to describe
the problem and propose three heuristic approaches, that combine genetic
algorithms and Adaptive Large Neighborhood Search, to solve it. Com-
putational experience with real data shows that the proposed heuristics
are suitable tools to solve the problem.

Keywords: Traveling salesman problem, multiple time windows, genetic
algorithm, adaptive large neighborhood search, heuristics.
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1 Introduction

Since 1979, IPMA carries out bottom trawl surveys that cover the Portuguese
continental coast from Caminha to Vila Real de Santo Antonio. Primarily,
these surveys are used as fisheries independent tools to estimate abundances,
recruitment and geographical distribution of several demersal fish species. These
surveys help to assess the status of important commercial species such as hake
(Merluccius merluccius) and horse mackerel (Trachurus trachurus) and also to
monitor other fish and crustacean species such as blue whiting (Micromesistius
poutassou), mackerel (Scomber scombrus), Norway lobster (Nephrops norvegi-
cus), deepwater rose shrimp (Parapenaeus longirostris), among others. Surveys
are carried out once a year in Autumn and last around 28 days. Sampling is
made using a Norwegian Campelen Trawl and sample size is around 95 loca-
tions. Sample sites are fixed from year to year along the Portuguese continental
shelf and slope. Normally, in each sample site location (fishing station) only
one haul is carried out: the trawl is set on the bottom of the sea, towed for 30
minutes and hauled back into the ship. The duration of the haul lasts around
60 minutes, depending on each fishing station depth because at greater depths
more time is needed to set and retrieve the trawl. The catch (species caught) is
then sampled on board: each species is weighted and counted separately. Tar-
get species are always measured and weighed by length class. Whenever there
is time available all other species are also measured. When catches are very
high, a representative sub-sample is deemed necessary. Other individual bio-
logical parameters are also collected for the target species: maturity, sex-ratio,
food habits, etc. Catch sampling is carried out while the vessel moves from one
fishing station to the next fishing station.

According to their geographical locations, north, southwest and south coast,
the set of fishing stations is partitioned into two subsets. Each subset gives rise
to a survey circuit, starting and ending at the port of Lisbon, which should be
completed in 14 or less days. Depending on the current weather conditions, the
captain decides whether to start sampling the northern half of the coast, or the
southern one. The other half is sampled in the second part of the survey. In
each part of the survey, based on the captains experience, the sequence of fishing
stations is determined on board depending on factors such as sea state, wind,
time of departure, etc. Usually, when the vessel leaves the port it heads to the
nearest fishing station. After finishing the fishing operation, the vessel proceeds
to the next station. All fishing operations must be carried out during daytime
(from 7 am to 6 pm). Consequently, during the night the vessel just navigates
from the last fishing station of the day to the first fishing station of the next day.
This routine goes on for 7 days, after which the vessel must enter a port. The
vessel has authorization to stop at Portimão (Portim) in the south, Lisbon (Lis)
in the center and Figueira da Foz (Fig) or Matosinhos (Matos) in the north.
The vessel must arrive at one of these ports by 6 pm and leaves port the next
morning, usually before dawn, in order to arrive at the first fishing station just
before sunrise. After finishing the first part of the survey, the vessel returns to
the port of Lisbon for food and water supply and, eventually, to change crew.
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The second part of the survey is similar to the first one, covering the fishing
stations that remain to be sampled.

Environmental concerns call for the minimization of traveled distance. Ac-
tually, minimizing the traveled distance results in less fuel and oil consumption
which in turn reduces environmental emissions as well as sea pollution. Due
to time windows constraints associated with the fishing operations, the shortest
path in distance will not necessarily be the shortest path in time. From the man-
agement and staff point of view it is desirable to minimize the completion time
in order to return home as soon as possible. To achieve the above purposes a
mathematical model, describing the underlying problem, will be developed and
optimization techniques will be used to deal with it.

Given the geographical locations of the fishing stations and of the ports (see
Figure 1), and the average speed of the vessel, the ship route optimization prob-
lem (SROP) consists of determining two circuits covering the whole sampling
plan that minimize the total traveled distance as well as the completion time of
each circuit such that:

• the first circuit starts on day 1 and finishes before the end of the 14th day,
at the port of Lisbon;

• the second circuit starts on day 15 and finishes before the end of the 28th
day, at the port of Lisbon;

• each fishing station is visited exactly once by one of the circuits;

• at each fishing station the fishing operation starts between 7 am and 6
pm; If the vessel arrives at a fishing station before 7 am then it has to
wait until 7 am to start a fishing operation.

• on the 7th and 21st days, the vessel enters a port (Lis, Portim, Fig or
Matos) where it, eventually, fills with fuel and stocks up with food and
water. It leaves port the following day;
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Figure 1: Fishing stations and ports
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The SROP may be viewed as a variant of the Traveling Salesman Problem
(TSP) with multiple time windows. In fact, there are several well known variants
of the TSP in which not all clients need to be visited (see [2] for a survey on
TSP variants). In the Generalized TSP cities are partitioned into clusters and
the objective is to find the minimum cost circuit visiting at least one city of each
cluster. If we consider that each fishing station defines a cluster and all the ports
are included in an additional cluster then the SROP can be seen as variant of
the Generalized TSP with time windows and additional constraints where each
‘mandatory’ cluster is visited once and the ‘selective’ cluster is visited more than
once according to a predefined periodicity. The SROP also has some similarities
with extensions of the Orienteering Problem in which each node has associated
a non-negative weight. The objective of the Orienteering Problem is to find a
path, whose total traveled time does not exceed a given threshold value, visiting
the subset of cities that maximizes the total weight. If the goal is to find P paths
(circuits), each limited in time by a predefined threshold value, the problem is
known as the Team Orienteering Problem. In [4] the authors proved that the
Orienteering Problem is NP-hard and developed a center-of-gravity heuristic.
Many other researchers propose heuristics to tackle this problem - see [13] for
a survey on the Orienteering Problem. In particular, heuristic algorithms to
solve the (Team) Orienteering Problem with time windows have recently been
proposed by [12, 11, 6] and [5]. In particular, [5] proposes a genetic algorithm
for solving the Orienteering Problem with time windows while [11] presents a
Variable Neighborhood Search procedure to solve a multi-period Orienteering
Problem with multiple time windows where mandatory clients should be visited
exactly once and potential customers can be visited at most once. In [8] the
authors generalize the Orienteering Problem by allowing node rewards and arc
length to vary based on the amount of the resources expended at each node and
propose a branch and bound algorithm to solve the problem.

When the starting and final locations of the path are the same, the Orien-
teering Problem looks for a circuit and is often called Selective TSP. In [3] the
authors developed different classes of valid inequalities and used a branch-and-
cut algorithm to solve a Selective TSP that includes a subset of compulsory
cities.

Furthermore, the SROP may be viewed as a real world application of the
TSP presented in [7], namely the TSP with selective cities and multiple time
windows (TSPSTW). In the TSPSTW, the set of cities is partitioned into two
subsets: mandatory cities and selective cities. All mandatory cities should be
visited once within one of the corresponding predefined multiple time windows.
A subset of the selective cities, whose cardinality depends on the tour completion
time, should be visited within one of the associated multiple time windows.
The objective is to plan a tour, not exceeding a predefined number of days,
that minimizes a linear combination of the total traveled distance as well as the
completion time. For the current application the mandatory cities correspond
to the fishing stations and the selective cities correspond to ports.

The outline of this paper is as follows. In section 2 the SROP is formally
stated and a mathematical formulation is proposed. Section 3 is devoted to the
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solution methodology. Computational results for different scenarios are reported
and discussed in section 4. Finally, some conclusions are drawn in section 5.

2 Problem formulation

To study the abundance of fish species, a research vessel must visit a set of
fishing stations. The survey trip is partitioned into two circuits, starting and
ending at the port of Lisbon, and lasting at most 14 days. According to a
predefined periodicity of 7 days, each circuit must visit one of the p available
ports to supply with food, refuel and/or change crew.

Therefore, one wants to determine two circuits that cover exactly once each
fishing station within predefined time windows:

Lisbon −→ fish station set 1 −→ port 1 −→ fish station set 2−→
Lisbon −→ fish station set 3 −→ port 2 −→ fish station set 4 −→ Lisbon

More formally, given n fishing stations and p ports, consider graph G =
(V,A). The set V = E ∪ P ∪ L is the vertex set in which each vertex i ∈
E = {1, ..., n} corresponds to a fishing station and each vertex i ∈ P = {n +
1, ..., n + p} corresponds to a port. Set L = L1 ∪ L2, with L1 = {0, n + p + 1}
and L2 = {n + p + 2, n + p + 3}, includes replicas of the port of Lisbon to
represent the starting and ending location of the route in the first circuit, L1,
and the starting and ending location of the route in the second circuit, L2.
We associate a commodity with each circuit. For each commodity k = 1, 2
there is an arc set Ak that includes arcs linking any pair of fishing stations,
({(i, j) : (i, j) ∈ E × E, i 6= j}, arcs connecting a fishing station to a port and
vice versa, {(i, j) : (i, j) ∈ E × P} and {(i, j) : (i, j) ∈ P ×E}, and arcs linking
a fishing station to vertices corresponding to Lisbon, {(i, j) : i ∈ L1, j ∈ E} and
{(i, j) : i ∈ E, j ∈ L2}. The arc set A = A1 ∪A2.

A travel time ti,j , indicating the time spent traveling from location i to
location j, is associated to each arc (i, j) ∈ A. Note that travel times need not
satisfy the triangle inequality and need not be symmetric.

For each day h = 1, ..., 14 a time window [eh, lh] is defined to ensure that, in
each circuit, for each fishing station visited on day h, the fishing operation starts
within 7 am and 6 pm and occurs before the end of the 14th day. In particular,
for day 1, 2, ..., 14 corresponds, respectively, the time window [7, 18], [31, 42],
..., [319, 330], established in hours. Each vertex i ∈ E has to be visited within
exactly one of the 14 time windows. Moreover, time windows [e14+s, l14+s],
s = 1, 2 are defined for the possible visits to a port in the first and/or the
second circuit. In this application, a predefined periodicity d = 7 × 24 (hours)
sets that after 7 consecutive days sailing a port should be visited. For each
vertex i ∈ E ∪ P the time spent during the corresponding visit is given and
denoted by profi.

To model the SROP we propose a mathematical formulation that is tailor-
made for sequential solutions approaches. We consider three types of decision
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variables: clustering variables, route variables and time variables. Concerning
clustering variables let yki = 1 if fishing station i is sampled during circuit k and
0 otherwise. As for the route variables, let xki,j = 1 if the vessel travels directly
from vertex i to vertex j in circuit k and 0 otherwise. Two sets of decision
variables are used to represent the time variables. One set defines the time
window at which the visit to each fishing station or to a port occurs. That is,
δhi = 1 if fishing station i ∈ E is visited during time window h, h = 1, ..., 14 and 0
otherwise. Regarding the visit to a port at the end of the first and third week, let
γki = 1 if port i is visited during circuit (time window) k = 1, 2 and 0 otherwise.
Binary variables zk, k = 1, 2, that depend on the predefined periodicity d and
the duration of circuit k, define if a mandatory visit to a port in circuit k should
be made or not. The other set of variables includes continuous time decision
variables, wi, i ∈ E ∪P , to indicate the starting time of the operation in vertex
i. Moreover, variables w0 and wn+p+2 define the starting time for the first and
second circuit while wn+p+1 and wn+p+3 define the arrival time to Lisbon at
the end of the first and second circuit. Parameter b = 14 × 24 (hours) defines
the latest arrival time at Lisbon for each circuit .

The SROP can be described by the following Mixed Integer Linear Program-
ming (MILP) formulation:

min
∑

(i,j)∈A

tij x
`
ij + (wn+p+3 − wn+p+2) + (wn+p+1 − w0) (1)
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2∑
k=1

yki = 1 i ∈ E ∪ L (2)∑
i:(i,j)∈Ak

xkij = ykj j ∈ E ∪ {n+ p+ 1, n+ p+ 3}, k = 1, 2 (3)

∑
j:(i,j)∈Ak

xkij = yki i ∈ E ∪ {0, n+ p+ 2}, k = 1, 2 (4)

∑
j:(i,j)∈Ak

xkij −
∑

j:(j,i)∈Ak

xkji = 0 i ∈ P, k = 1, 2 (5)

14∑
h=1

δhi = 1 i ∈ E (6)

14∑
h=1

ehδhi ≤ wi ≤
14∑
h=1

lhδhi i ∈ E (7)

z1 ≥ wn+p+1 − w0

d
− 1 (8)

z2 ≥ wn+p+3 − wn+p+2

d
− 1 (9)∑

j∈P
γkj = zk k = 1, 2 (10)

2∑
k=1

e14+kγkj ≤ wj ≤
2∑
k=1

l14+kγkj j ∈ P (11)

γkj =
∑

i:(i,j)∈Ak

xki,j j ∈ P, k = 1, 2 (12)

wj = 0 j = 0, n+ p+ 2 (13)

wj ≤ b j = n+ p+ 1, n+ p+ 3 (14)

wj ≥ wi + profi + tij −M(1− xkij) (i, j) ∈ Ak, k = 1, 2 (15)

xkij ∈ {0, 1} (i, j) ∈ Ak, k = 1, 2 (16)

wi ≥ 0, i ∈ E ∪ P (17)

δhi ∈ {0, 1} i ∈ E, h = 1, ..., 14 (18)

γki ∈ {0, 1} i ∈ P, k = 1, 2 (19)

yki ∈ {0, 1} i ∈ E ∪ L, k = 1, 2 (20)

zk ≥ 0 integer, k = 1, 2 (21)

The objective function (1) involves the minimization of two terms: the total
traveled time and the completion time, which correspond respectively to save
fuel and oil consumption and to save time. Note that the duration of each
circuit, (wn+p+3−wn+p+2) and wn+p+1−w0, is a function of the vessel’s travel
time, the time waiting at each station before starting the fishing operation and
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the time spent at each port. As variables w0 and wn+p+2 are set equal to zero,
the duration of each circuit is equal to its completion time. Constraints (2),
(3) and (4) state that the vessel visits once each fishing station and this visit
occurs in a circuit that starts and ends at Lisbon. Moreover, (3) and (4) ensure
flow conservation for vertices corresponding to fishing stations. Note that, we
set a priori y10 = y1n+p+1 = y2n+p+2 = y2n+p+3 = 1. Constraints (5) ensure
flow conservation for vertices corresponding to ports. Constraints (6) ensure
that each fishing station is visited within exactly one time window while (7)
guarantee that the visit occurs within a feasible time window. Constraints (8),
(9) and (10) define, for each circuit, the number of mandatory visits to the ports
according to a given periodicity d. Constraints (11) guarantee that when a visit
to a port occurs it must be within predefined time windows. Constraints (12)
guarantee the consistency between variables xki,j and variables γkj . Constraints
(13) establish the time at which the vessel leaves Lisbon for the first and second
circuits. Constraints (14) ensure that the duration of each circuit j is equal to
or less than b. Since route variables are indexed by each circuit, we consider
that each circuit starts at instant 0 and finishes before instant b = 14 × 24
(hours). Constraints (15) link variables x and w. These constraints establish
the precedence relation between two consecutive vertices visited by the vessel
and eliminate sub-tours. In detail, constraints (15) state that if the vessel goes
from location i to location j then the time at which it starts visiting j, wj , must
be greater than the time at which it starts visiting i, wi, plus the time spent
at vertex i, plus a function of the time spent in transit from i to j, tij whose
expression is given by tij = tij if i ∈ P or tij = ε + tij if i ∈ E. Parameter ε
accounts for extra time due to possible setbacks at a fishing station.

3 Solution approach

We propose three alternative meta-heuristics, based on genetic algorithms and
Adaptive Large Neighborhood Search (ALNS), to solve the SROP.
In the mathematical model (1)-(21), presented in the previous section, one can
identify three combinatorial sub-problems: a clustering problem dividing the
set of fishing stations into two subsets; a routing problem defining the spatial
movement of the vessel; a scheduling problem establishing the times at which
each location is visited. Despites the existence of a high dependency among
the referred three sub-problems one may devise a hierarchic ordering of the
decisions that are involved in the resolution of the SROP which suggests the use
of sequential approaches. We present two sequential approaches that divide the
decisions involved in the problem resolution into two phases and an integrated
approach that exploits the dependency of the referred three sub-problems. All
approaches produce solutions that can be further optimized by using ALNS.
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3.1 Sequential approaches

To solve the SROP, IPMA follows a sequential approach based on a hierarchic
ordering of decisions. At the beginning of the survey trip, a clustering deci-
sion has to be made to define the partition of the set of fishing stations into
two subsets E1 and E2. Fishing stations belonging to E1 are visited during
the first two weeks while fishing stations in E2 are surveyed during the third
and fourth week. For each subset Ei, i = 1, 2, a routing decision, states the
sequence of fishing stations to be sampled. After that, a scheduling decision
establishes the times at which each location is visited on each day. Note that
concerning IPMA’s approach, decisions of one level are taken assuming that the
previous levels decisions have already been made and will constraint decisions
of the subsequent levels. In subsection 3.1.1, we propose two new alternative
sequential approaches, Seq and SeqPlus that use the same hierarchic ordering of
the decisions but allow different sub-problem integration between two levels of
decision. In 3.1.2 we refer a sequential approach already presented in [7] which
will be compared with the new proposals from a computational point of view.

3.1.1 Sequential approaches based on metaheuristics

In this subsection, we propose two alternative sequential approaches, Seq and
SeqPlus both based on genetic algorithms. Table 1 summarizes for each ap-
proach and for each phase the underlying optimization sub-problem(s) to be
solved and type of decisions considered.

Approach Seq Approach SeqPlus

Phase 1: Solve clustering-routing Solve clustering-routing
Fixe clusters and route Fixe clusters

Phase 2: Solve scheduling Solve routing-scheduling

Table 1: Decision scheme

In Seq the clustering and routing decisions are fixed by phase 1 and phase 2
just deals with the scheduling subproblem. In SeqPlus only clustering decisions
are fixed in phase 1 and phase 2 deals with the integrated routing and scheduling
subproblem.

Concerning both sequential approaches, the goal of phase 1 is to make a
partition of the set of fishing stations into two subsets taking into account the
spatial movements of the vessel and minimizing the total traveled distance (that
is the first term of the objective function 1). This is accomplish by determining
two disjoint circuits sharing once the port of Lisbon and ensuring that each
fishing station is covered once by one of the circuits, disregarding time windows
constraints. Each circuit i, i = 1, 2 defines the subset of stations Ei. Each subset
Ei, i = 1, 2, includes the fishing stations visited by circuit i.

In Seq the circuits obtained in phase 1 define both the two subsets E1 and
E2 and the ordering by which the fishing stations are visited, disregarding the
ports. Then, in phase 2, a greedy algorithm defines the starting time for the
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visit to each fishing station and establishes the visits to the ports, satisfying
time windows.

In SeqPlus the circuits obtained in phase 1 just define the two subsets E1

and E2. Then, for each Ei, i = 1, 2, phase 2 solves an integrated routing and
scheduling problem to optimize the traveled distance and the completion time of
each circuit, while ensuring that time windows as well as the compulsory visits
to ports are verified.

Next, we detail the procedures developed to implement Seq and SeqPlus.
In phase 1 of both approaches, a genetic algorithm, further denoted by Gen-
ClusR, is used to determine the two disjoint circuits sharing once the port
of Lisbon. Each solution is represented as a permutation of the set vertices
0, 1, ..., n, n+ p+ 1, where the port of Lisbon is split into two vertices 0, n+ p+ 1
which will indicate where the first circuit starts and ends. In general, the per-
mutation,

i1, ..., ia, 0, j1..., jb, n+ p+ 1, k1, ..., kc

leads to the following partitioning of vertices into two circuits

0, j1..., jb, n+ p+ 1

and
n+ p+ 2, k1, ..., kc, i1, ..., ia, n+ p+ 3.

The fitness function, to be maximized, is defined as the reciprocal of the total
tour length. An initial random (uniform) population is generated. Concerning
the genetic operators, we have considered linear-rank selection, simple inversion
mutation and cycle crossover (CyCx) operators. The pseudo-code of the algo-
rithm GenClusR is presented in Algorithm 1 where the required parameters M,
pc, pm, new%, maxgen represent,repectively, the population size, the crossover
probability, mutation probability, the % of population to be replaced in each
generation and the maximum number of generations.

Algorithm 1 GenClusR pseudo-code

Require: n, p, M, pc, pm, new%, maxgen
1: Generate an initial population of M random (n+2)-permutations.
2: Evaluate the population considering the reciprocal of the total tour length.
3: repeat
4: Select parents from the population using linear-rank selection.
5: Mate the parents to produce children: to each pair of parents apply, with

probability pc, the crossover operator CyCx and apply to each children,
with probability pm, the simple inversion mutator.

6: Evaluate fitness of the children using the decoder and linear scaling.
7: Substitute at most new% of the population by the children.
8: until maxgen is reached or population has converged
9: The best solution found is the one corresponding to the highest fitness.

In approach Seq, the two circuits of phase 1, define the order by which the
fishing stations will be visited. Then it only remains to define the starting time
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associated to each visit and also the visits to the ports. So, starting in Lisbon
at instant 0, the vessel moves towards the first station to be visited, if it arrives
before the starting time of the corresponding time window then it has to wait
until that instant to start the visit. After finishing the fishing operation at this
station, the vessel moves toward the next station and, again, the validity of the
time window constraint should be checked. The procedure goes on until the end
of the seventh day is reached. Then, a compulsory visit to the nearest port is
assured. After leaving the port the vessel moves to the next fishing station and
the procedure continues until the end of the circuit, when the port of Lisbon
is reached. The procedure does not guarantee that at the end of each circuit,
the vessel returns to Lisbon before the 14th day. However, we anticipate that
the low fitness score of solutions exceeding 14 days will rule them out from the
population in earlier iterations of the genetic algorithm.

Procedure 2 Seq

1: Run GenClusR to obtain two disjoint circuits covering all the fishing stations
2: Considering the ordering of stations defined by the circuits in 1, obtain a solution

to the SROP (Algorithm 4 Decoder).

In spite of phase 1 being similar for approaches SeqPlus and Seq, concerning
SeqPlus the input for phase 2 is the set of of two clusters of fishing stations,
Ei, i = 1, 2, induced by each circuit i obtained in phase 1. Consequently, in
phase 2 we have to solve two partial SROPs each corresponding to a routing and
scheduling subproblem for each cluster of stations. We solve each subproblem
using the genetic algorithm, GenRSched described in Algorithm 3. GenRSched
uses a permutation of the fishing stations to code each solution and a decoder,
detailed in Algorithm 4, to assess the corresponding value of the objective func-
tion (1). The decoder is similar to the heuristic procedure described in phase 2
of the approach Seq. Given a permutation of the fishing stations, the decoder
determines the starting time of each visit, assuring the validity of time windows.
The visit to the nearest port is compulsory at the end of the seventh day. The
fitness value is obtained by adding a scalar large enough to the symmetric objec-
tive function score and using the linear scaling method. Each |Ei|-permutation
(permutation of |Ei| elements) corresponds to a solution for the subproblem
i. In fact, starting at the port of Lisbon at instant 0, the vessel visits all the
required fishing stations once, in one of the given time windows, and at the end
returns to the port of Lisbon. If the route length is greater than 7 days then at
the end of the 7th day the nearest port is visited. Note that all the constraints
(3) - (21) are verified with the possible exception of (14) that states the arriving
time at Lisbon before the end of day 14. As mentioned above, we expect that
the low fitness score of solutions violating (14) will eliminate them from the
population in earlier generations.
For the GenRSched genetic algorithm we had tested several known crossover op-
erators suitable for permutations, namely the cycle crossover (CyCx), the order
based crossover (OrCx) and the partial match crossover (PMx). After a pre-
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liminary computational study we had chosen the PMx operator. As mutation
operator we use the swap mutator. We choose to use steady state substitution
replacing new% members at each iteration(we also have tested non-overlapping
populations and incremental substitution- replacing 2 members of each genera-
tion) and the roulette wheel selection method.

Algorithm 3 GenRSched pseudo-code

Require: n, M, pc, pm, new%, maxgen
1: Generate an initial population of M random n-permutations.
2: Evaluate the population using the decoder and linear scaling.
3: repeat
4: Select parents from the population using the roulette wheel selection

method.
5: Mate the parents to produce children: to each pair of parents apply, with

probability pc, the crossover operator PMx and apply to each children,
with probability pm, the Swap mutator.

6: Evaluate fitness of the children using the decoder and linear scaling.
7: Substitute at most new% of the population by the children.
8: until maxgen is reached or population has converged
9: The best solution found is the one corresponding to the highest fitness.
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Algorithm 4 Decoder pseudo-code

Require: n-permutation
1: window = 1; pre = 0; w0 = 0
2: for p = n+ 1, n+ p do
3: wp = 0
4: end for
5: station = permutation(1)
6: wstation = w0 + t0 station
7: totaldist = t0 station
8: for k = 2, n do
9: pre = permutation(k − 1)

10: station = permutation(k)
11: wstation = wpre + profpre+ tpre station
12: if wstation ≥ ewindow then
13: if window = 7 then
14: pmin = n+ 1
15: for p = n+ 2, n+ p do
16: if tpre pmin ≥ tpre p then
17: pmin = p
18: end if
19: end for
20: wpmin = wpre + profpre+ tpre pmin
21: wstation = wpmin + profpmin + tpmin station

22: totaldist = totaldist+ tpre pmin + tpmin station

23: else
24: totaldist = totaldist+ tpre station
25: end if
26: window = window + 1
27: if wstation ≥ ewindow then
28: while wstation ≥ lwindow do
29: window = window + 1
30: end while
31: end if
32: if wstation ≤ ewindow then
33: wstation = ewindow
34: end if
35: else
36: totaldist = totaldist+ tpre station
37: end if
38: end for
39: wn+p+1 = wstation + profstation + tstation n+p+1

40: totaldist = totaldist+ tstation n+p+1

41: objective score = totaldist+ wn+p+1

42: return objective score and wj for all j ∈ V
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The sequential heuristic SeqPlus can be summarized in Procedure 5.

Procedure 5 SeqPlus

1: Run GenClusR to obtain two disjoint sets of fishing stations.
2: For each subset of stations, run GenRSched to obtain a solution for the partial

SROPs.
3: Obtain a solution to the SROP joining the two partial solutions.

The solutions obtained by the presented sequential approaches can be further
improved using ALNS as explained in section 3.3.

3.1.2 Sequential approach based on branch-and-bound

In [7] the SROP is addressed as a particular case of the TSPSTW. Branch-and-
bound techniques combined with variable fixing strategies are used to obtain
optimal/near-optimal from an efficient standard MILP solver. The proposed
heuristic starts with a pre-processing phase where clustering techniques are used
to reduce the cardinality of the arc set A. In the second phase, according to
the captain guidelines the problem is decomposed into two partial SROPs, one
for the north coast and the other for the southwest and south coast. For each
partial SROP, a generic MILP solver is then used to obtain a feasible solu-
tion. The corresponding linear programming relaxation is solved and whenever
the resulting optimal solution is not integer, feasible solutions are obtained by
branch-and-bound techniques and variable fixing strategies, within a predefined
time limit. In the third phase, the current solutions are analyzed to identify
’good’ features that reflect some preferences of the crews as well as operational
preferences. These good characteristics are kept by variable fixing before re-
running the standard solver, within a predefined time limit. Afterwards, the
solutions obtained are improved by the ALNS as explained in section 3.3.

3.2 Integrated Approach - GenShipI

In this section we propose an integrated approach to address the SROP. The
goal is to adapt the genetic algorithm GenRSched in order to obtain two disjoint
circuits sharing once the port of Lisbon and ensuring that each fishing station
is covered once by one of the circuits, while satisfying time windows constraints
and the periodic visits to ports. Consequently, the integrated procedure, Gen-
ShipI, is similar to phase 2 of SeqPlus but, instead of solving two partial SROP,
it considers the set of all fishing stations. In this context, the solutions are rep-
resented by permutations of (n + 1) elements where n is the number of fishing
stations and the additional element, 0, corresponds to the port of Lisbon and
is used to identify the end/beginning of each circuit. For example, given an
instance of 10 fishing stations, that is n = 10, the (n+ 1)-permutation

(6, 4, 8, 1, 9, 3, 0, 10, 7, 2, 5)
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leads to the following partitioning of stations into two circuits, starting and
ending at the port of Lisbon:

Lis→ 6→ 4→ 8→ 1→ 9→ 3→ Lis

and
Lis→ 10→ 7→ 2→ 5→ Lis.

The permutation establishes the order in which the stations are visited,starting
with the first fishing station to be visited after leaving Lis at time instant w0 =
0. Thus, the genetic algorithm must, mainly, learn how to adjust the two
circuits. Given the (n+ 1)-permutation, a decoder similar to the one described
in Algorithm 4 determines the starting time of the visit to each station, assuring
the validity of time windows. In each circuit, the visit to the nearest port is
compulsory at the end of the 7th day. When the decoder reaches the element
0 of the permutation, then the first circuit ends and the second one starts at
the 15th day. The procedures continues in a similar way until the end of the
permutation is reached. As for the sequential approaches we have no guarantee
that the duration of each circuit is equal to or less than 14 days. In fact, the
algorithm tend to generate many solutions with one circuit very short and the
other with more than 14 days. Therefore, when the constraint (14) is violated, a
penalization to the fitness score occurs and the low fitness score of such solutions
is enough to rule them out from the population in earlier iterations of the
GenShipI algorithm.

The feasible solutions obtained by GenShipI can be further improved using
ALNS as explained in the next section.

3.3 Adaptive large neighborhood search

Usually ship routing and ship scheduling applications are associated with a high
degree of uncertainty due to bad weather conditions which leads to the demand
for robust solutions (see for instance [1]). We propose an ALNS algorithm
to introduce some robustness in the solutions obtained by Seq, SeqPlus and
GenShipI. Robust solutions offer more stability and flexibility to adapt and
recover from disruptions caused by bad weather conditions or setbacks occurring
during fishing operations.

Given a solution of the SROP, the objective of the ALNS procedure is to
improve the traveled distance in each day, without increasing the number of
days at sea.

The proposed ALNS is based on work developed in [10] and [9] by Stefan
Ropke and David Pisinger. The ALNS applies several competing removal and
insertion heuristics. The selection of a heuristic is based on statistics gathered
during the search. At each iteration, the algorithm looks for a better solution
by destroying and repairing a part of the current solution. A removal heuristic
assigns undefined value to at most q variables followed by a repair heuristic that
re-assigns feasible values to those variables.
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As noted by several authors the performance of an ALNS algorithm depends
on the choice of removal and insertion procedures. One may consider simple
insertions heuristics that run in short time. Usually simple and fast heuristics
lead to poor quality solutions. However, this disadvantage is offset by the fact
that, large moves around the solution space lead to a diverse set of feasible
solutions that potentially includes good quality solutions.

Looking to the particular structure of the problem, we noticed two types of
routes: daytime routes and nighttime routes. Daytime routes include the set of
fishing stations to be visited on a day according to time windows constraints.
Nighttime routes connect daytime routes and correspond to the vessel trip from
the location of the last visited fishing station on day i and the location of the
first fishing station to be visited on day i+1. There are no explicit constraints
on nighttime routes however implicitly the survey must be completed in 28 or
less days. To exploit this particular structure we have considered four different
removal operators.

• Daytime removal - removes a subset of q fishing stations from a daytime
route. The subset to be removed do not include the first and the last
fishing stations visited on that day in order that nighttime trips, linking
consecutive days, remain unchanged.

• Time oriented removal - removes a subset of q fishing stations from day-
time route i and from daytime route i+1. The subset to be removed does
not include the first and the last fishing stations visited, respectively, on
day i and day i+1, so as to not disrupt the connections to days i-1 and
i+2.

• Route proximity removal - removes a subset of q fishing stations, which
are geographically close, from daytime route i and from daytime route
i+k, k> 1. The subset to be removed do not include the first and the last
fishing stations of routes i and i+k.

• Nighttime removal - removes two arcs corresponding to two nighttime
routes, each arc connecting two fishing stations.

The Daytime removal, Time oriented removal and Route proximity removal op-
erators remove a subset of fishing stations by disconnecting them from their
current routes, leaving partial routes and/or isolated fishing stations. By re-
moving two nighttime arcs, the Nighttime removal operator leads to three three
partial routes in the solution. The Daytime removal and the Route proximity
removal operators only affect daytime routes. The Time oriented removal works
in both daytime and nighttime routes. The Nighttime removal moves within the
set of nighttime connections. The Time oriented and the Route proximity re-
moval operators are based on the idea that the fishing stations removed from
daytime route i are easy interchanged with those removed from day i+k due to
geographical proximity, while maintaining time windows constraints feasibility.

At each iteration of the ALNS algorithm, a neighborhood defining operator
is selected, among the set of four operators defined above. Since the execution of
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a removal operator leads to a set of partial sub-routes then, a insertion operator
should be applied in order to repair the solution. We have considered that
neighborhoods Ni, i = 1, ..., 4 induced by the removal operators will take care
of both the removal and insertion steps. That is, the set of partial sub-routes will
be reconnected among them by a least cost insertion operator, ensuring the non
violation of time windows constraints. The least cost insertion heuristic looks
to routes, that do not include ports, without taking into account it orientation.
As a consequence it may reverse the orientation of such type of routes. This can
have some impact while repairing nighttime arc removals as illustrated in the
example below. In this example, the Nighttime removal operator removes the
arcs (6,4) and (9,24). To repair the solution, the least cost insertion heuristic
inserts arcs (6,9) and (4,24) by reversing the orientation and swapping days i+1
and i+ 2.

Day i: → 23 → 1 → 8 → 6 → Day i: → 23 → 1 → 8 → 6 →
Day i+ 1: → 4 → 17 → 19 → 18 → Day i+ 1: → 9 → 13 → 14 → 16 →
Day i+ 2: → 16 → 14 → 13 → 9 → Day i+ 2: → 18 → 19 → 17 → 4 →
Day i+ 3: → 24 → 25 → 26 → 27 → 28 → Day i+ 3: → 24 → 25 → 26 → 27 → 28 →

The selection of the operators is based on a roulette wheel scheme. Every
removal/insertion operator is associated with a score that represents it past
performance at improving the current solutions. Operators that have success-
fully found improving solutions have a higher score and consequently a higher
probability of being chosen. The initialization of the score vector, π, attributes
an equal score to each removal/insertion operator. Whenever operator i finds
a solution x′ better than the current solution x a constant ε is added to the
correspondent score πi. The probability of operator i being chosen is given by

πi∑4
j=1 πj

.

The new solution x′ is accepted if the corresponding total traveled distance
is less or equal then the total traveled distance covered by the current solution
x. The ALNS algorithm is summarized in Algorithm 6.

Algorithm 6 ALNS algorithm pseudo-code

Require: x feasible solution
1: repeat
2: Use roulette wheel selection based on the scores vector π to choose a

removal/insert operator inducing neighborhood Ni.
3: Consider the heuristics correspondent to the induced neighborhood Ni

and obtain a new solution x′ from x.
4: if vopt(x′) < vopt(x) then
5: x = x′

6: end if
7: Update the roulette wheel statistic score πi of neighborhood Ni
8: until No improvement over x is achieved within k consecutive iterations
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4 Computational experience

We used the GALIB genetic algorithm package, written by Matthew Wall at
the Massachusetts Institute of Technology [14] to code the genetic algorithms,
GenClusR and GenRSched. We used the R programming language for coding
the ALNS procedure. The computational experience was performed on a Intel
Core 2 Quad Q6600, 2.4 GHz with 4GB RAM.

4.1 Computational study details

Regarding the genetic algorithms, in each generation, we considered a popula-
tion size of 50, a probability of crossover of 0.8, a probability of mutation of 0.1
and steady state substitution - replacing 75% members at each generation. The
maximum number of generations was set to 5000.

For the computational experience we considered a set of 95 fishing stations
and 4 ports namely Lis, Portim, Fig and Matos. Concerning the geographical
location of Portugal, 52 fishing stations and 3 ports, Lis, Fig and Matos, are
located on the north coast, 23 fishing stations on the southwest and 20 fishing
stations and 1 port, Portim, located on the south coast (see Figure 1). Therefore
E = {1, ..., 95} where fishing stations 1, ..., 52 are located on the north coast,
53, ..., 75 are located on the southwest and the remaining 76, ..., 95 are located
on the south. For each fishing station and each port the latitude, longitude and
depth are known. We have a forecast of the time spent in the fishing operation
at each station, which depends on the respective depth.

We have considered 6 scenarios depending on different weather conditions,

• Very nice weather conditions - the vessel speed is about 11 knots;

• Good weather conditions - the vessel speed is about 9 knots;

• Not so nice weather conditions - the vessel speed is about 7 knots.

and different values for parameter ε, which accounts for extra time during the
fishing operation,

• ε = 30, the estimated value for the current equipment used in fishing
operations;

• ε = 15, the estimated value for new equipment that might be purchased.

Each procedure, Seq, SeqPlus and GenShipI is run 10 times for each scenario.

4.2 Computational results

In this section we compare from a computational point of view the three heuris-
tic approaches that combine genetic algorithms and ALNS, proposed in sections
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3.1.1 and 3.2, as well as the heuristic approach based on branch-and-bound tech-
niques and variable fixing strategies, developed in [7] and presented in section
3.1.2.

Table 2 and Figure 2 show computational results for 10 runs of the GenClusR
algorithm executed in phase 1 of both Seq and SeqPlus algorithms. Concern-
ing table 2, row ”Min” (”Max”) describes the solution with shortest (longest)
traveled distance. Row ”Average” displays average results for the 10 runs.

GenClusR Solution partition

10 Runs Dist CPU circuit1 # stat Dist circuit2 # stat Dist
(km) (sec) stat visited (km) stat visited (Km)

Min 1782.1 24.9 53 - 95 43 833.3 1 - 52 52 948.8

Average 1821.0 33.0 53 - 95 43 848.6 1 - 52 52 972.4

Max 1915.9 48.8 53 - 95 43 887.4 1 - 52 52 1028.5

Table 2: Computational results for 10 runs of the GenClusR algorithm

●
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Cluster−first − 10 runs
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Cluster−first (North vs SSW) − 10 runs

Figure 2: GenClusR algorithm: objective function value for 10 runs

The second and third columns display, respectively, the traveled distance, in
km, for the two circuits and the CPU time spent by the algorithm, in seconds,
for the 10 runs. Detailed results about each circuit are presented in columns 4 to
9. Columns 4 to 9 show, for each circuit, which fishing stations are visited, the
total number of fishing stations visited and the traveled distance. Due to their
geographical location, some fishing stations are expected to belong to different
circuits. However, there is a group near Lisbon that rose doubts which were
clarified through the execution of GenClusR. Concerning the traveled distance
one can see from figure 2 that some uniformity in GenClusR behavior as been
attained. Each boxplot has only one outlier corresponding to the worst solution
obtained over 10 runs of GenClusR.
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Tables 3 and 4 report computational results for procedures Seq and SeqPlus,
respectively. Twelve instances were considered, each corresponding to a cluster
of fishing stations and a scenario.
Table 3 presents results for algorithm Seq followed by the ALNS. Actually,
Seq applies the decoder to GenClusR best solution (presented in the first row of
table 2). Consequently, the same permutation defines the order by which fishing
stations are visited and so, at the end of phase 1, all instances of each cluster
have the same traveled distance. However, in phase 2 the greedy algorithm is
executed to establish the time windows as well as the visits to the ports yielding,
according to the scenario under consideration, different completion times and
different traveled distances. Afterwards, the ALNS procedure is applied, to each
instance, to adjust the sequence of fishing stations to be visited while improving
the traveled distance. It was decided to keep the completion time so as to obtain
robust solutions able to absorb some setbacks that may occur on each day.
Table 4 shows SeqPlus+ALNS and SeqPlus results. Tables 3 and 4 present
in columns ”instance”, ”Obj Value”, ”Dist (km)”, ”Completion time (h)”, ”#
Days visiting”, ”Max visit/day” and CPU (sec)”, respectively, the name of
the instance, the objective function (1) value, the traveled distance in km, the
completion time in hours, the number of days at sea, the maximum number
of fishing stations visited during a day and the time spent by the algorithm,
in seconds. The results corresponding to SeqPlus are displayed in the eighth
and ninth columns of table 4, respectively, the traveled distance solution and
the CPU. It is worth noting that Seq and SeqPlus always produced feasible
solutions to SROP.

Seq + ALNS
instance Obj Dist Completion # Days Max CPU

Value (km) time (h) visiting visit/day (sec)

N715 316.2 969 247.0 10.3 6 17.2

N730 327.3 1021 254.4 10.6 6 17.6

N915 279.3 957 223.0 9.3 7 17.4

N930 307.4 982 249.7 10.4 6 17.6

N1115 257.1 1011 206.5 8.6 6 17.5

N1130 279.0 949 231.5 9.6 6 17.4

SSW715 283.8 1071 207.3 8.6 6 13.5

SSW730 293.1 858 231.8 9.7 6 13.8

SSW915 265.2 1070 202.3 8.4 6 13.4

SSW930 267.7 888 213.5 8.9 6 13.7

SSW1115 235.9 1023 184.8 7.7 7 13.6

SSW1130 255.7 1070 202.2 8.4 6 13.5

Table 3: Best results for Seq followed by ALNS
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SeqPlus + ALNS SeqPlus
instance Obj Dist Completion # Days Max CPU Dist CPU

Value (km) time(h) visiting visit/day (sec) (km) (sec)

N715 310.3 1123 230.1 9.6 7 17.2 1169 17

N730 314.8 1143 234.6 9.8 7 17.2 1169 17

N915 265.3 1077 201.9 8.4 8 19.2 1347 19

N930 275.5 1091 211.3 8.8 7 17.1 1241 17

N1115 244.5 1096 189.7 7.9 8 19.2 1157 19

N1130 252.9 1025 201.6 8.4 7 17.2 1025 17

SSW715 242.8 853 181.9 7.6 7 15.2 901 15

SSW730 251.1 920 185.4 7.7 7 13.2 933 13

SSW915 213.7 854 163.5 6.8 8 13.2 854 13

SSW930 211.9 828 163.2 6.8 7 13.3 851 13

SSW1115 194.9 828 153.5 6.7 7 13.1 828 13

SSW1130 202.3 869 158.8 6.6 8 14.1 869 14

Table 4: Best results for SeqPlus and SeqPlus followed by ALNS

Tables 3 and 4 show that it is better to optimize routing and scheduling after
the cluster definition (SeqPlus+ALNS) when compared to optimize scheduling
after the cluster and route definition (Seq+ALNS). This means that it is worth
handling time windows inside the genetic algorithm when designing the route.
Concerning the objective function value, which accounts for both the traveled
distance and the completion time, SeqPlus+ALNS outperforms Seq+ALNS for
all instances. Figure 3 details the behavior of the objective function value
throughout the 10 iterations of GenRSched, in phase 2 of SeqPlus. We see
three pairs of boxplots, being each pair characterized by the vessel speed. Con-
cerning the distribution of the objective function values one may say that, for
the North and SSW instances, boxplots are symmetric in about 4 instances and
negatively skewed in 3 instances. The remaining instances have outliers corre-
sponding to the best solution found. This is mainly due to the fact that we
have considered only 10 runs. By considering a small number of runs we had in
mind to analyze the quality of solutions obtained in short CPU.

Analyzing each component of the objective function value, one can see that
Seq+ALNS gives a shorter distance than SeqPlus+ALNS in 7 out 12 instances.
This was expected since for Seq the main optimization problem, wich is handled
by GenClusR, minimizes traveled distance. These partial results are overshad-
owed by the fact that, for the completion time SeqPlus+ALNS significantly
outperforms Seq+ALNS for all instances. This is also visible in column ”Days
visiting” which shows that the average number of days at sea for SeqPlus+ALNS
is 7.9 while for Seq+ALNS is 9.2 days. Moreover, the largest difference arises
for instance SSW930 whose SeqPlus+ALNS solution implies 6.8 days at sea
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Figure 3: GenRSched: objective function value for 10 runs

while Seq+ALNS implies 8.9 days. The differences between the number of days
at sea given by Seq+ALNS and SeqPlus+ALNS may be partially explained by
column ”Max visit/day”. In fact, for Seq+ALNS and SeqPlus+ALNS the max-
imum number of visits to fishing stations in each day is on average, 6.2 and 7.3,
respectively. A larger number of visits per day leads to a shorter number of days
at sea and, consequently, a shorter completion time. Concerning the CPU, there
are no significant differences between Seq+ALNS and SeqPlus/SeqPlus+ALNS.

As to the question whether it is worth applying or not the ALNS procedure
one may noticed that for algorithm Seq the ALNS adjusts the permutation of
fishing stations, given by the solution of GenClusR, taking into account the time
windows and the compulsory inclusion of the ports established by the decoder,
in order to decrease the traveled distance.

Comparing SeqPlus and SeqPlus+ALNS, for the 12 instances tested, one
can see that on average the traveled distance decreases by 4.4%, after the exe-
cution of ALNS. This decrease takes its maximum value of 20.0% for instance
N915 and its minimum value of 0% for instances N1130, SSW915, SSW1115
and SSW1130. Since the increase in CPU for SeqPlus+ALNS is meaningless
compared to SeqPlus CPU, one may consider it worth running the ALNS, as a
final step, to improve the solution given by the genetic procedure.

Table 5, which follows the same format as Table 3, shows the solutions
obtained by the sequential approach based on branch-and-bound and variable
fixing. A time limit of 1600 seconds was imposed for the second and third phases
of the heuristic. The resulting feasible solutions are further optimized by the
application of the ALNS described in 3.3.

From tables 4 and 5, one can see that, concerning the objective function
value, the solutions given by the Varfix&Branch-and-Bound+ALNS are all of
poorer quality than the solutions given by the SeqPlus+ALNS, or even than Se-
qPlus. Regarding the traveled distance Varfix&Branch-and-Bound+ALNS had
a better performance than SeqPlus+ALNS in 4 out of 12 instances. However,
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Varfix&Branch-and-Bound + ALNS
instance Obj Dist(km) Completion # Days Max CPU

Value time(h) visiting visit/day (sec)

N715 336.9 1089 259.2 10.8 6 3205

N730 381.5 1141 300.0 12.5 6 3205

N915 293.2 1028 232.8 9.7 6 3206

N930 312.3 1149 244.8 10.2 6 3205

N1115 256.7 957 208.8 8.7 6 3205

N1130 293.0 1060 240.0 10 6 3204

SSW715 295.9 885 232.8 9.7 6 3205

SSW730 320.7 928 254.4 10.6 5 3204

SSW915 241.5 883 189.6 7.9 6 3205

SSW930 264.3 986 206.4 8.6 6 3203

SSW1115 231.2 928 184.9 7.7 7 3204

SSW1130 234.4 897 189.6 7.9 6 3205

Table 5: Best results for Varfix&Branch-and-Bound followed by ALNS

the completion time for SeqPlus+ALNS solutions is better than the comple-
tion time for Varfix&Branch-and-Bound+ALNS for all the instances. Conse-
quently, the number of days at sea, which depend on the completion time, is
always larger for Varfix&Branch-and-Bound+ALNS than for SeqPlus+ALNS.
For Varfix&Branch-and-Bound+ALNS, the maximum number of fishing sta-
tions visited on a day is on average 6. On average, the CPU time is 6409.3
seconds for Varfix&Branch-and-Bound+ALNS which is clearly higher than the
average CPU time of SeqPlus+ALNS, 17.8 seconds.

Table 6 presents the computational results for the integrated approach, Gen-
ShipI. In order to compare these results with those obtained for the sequential
approaches we associate 3 rows with each instance, the first displays the instance
results and below it, two rows corresponding to the detailed results for each cir-
cuit. For each row, column ’# Fish Stat’ presents the number of fishing stations
visited and for each circuit, this number is split by region, north + south and
southwest. The information displayed in the remaining columns is similar with
the one displayed in Tables 3, 4 and 5. Note that, the ALNS procedure adjusts
the sequence of fishing stations to be visited in each circuit while minimizing
the total traveled distance of the survey. Since there is a significant reduction
in the traveled distance, visits to ports might be out of place for the modified
circuits after ALNS. In such cases the decoder is applied to the modified circuits
redefining the starting time of each fishing operation and the compulsory visits
to ports. Despite the large improvement on the traveled distance obtained with
the ALNS procedure, on average 18.9%, the results for GenShipI are poor for
all instances. In fact, the traveled distance, the completion time, the number of

23



GenShipI + ALNS GenShipI
instance # Fish Dist Completion # Days Max CPU Dist CPU

Stat (km) time(h) visiting visit/day (sec) (km) (sec)

NSSW715 95 3041 - 23.5 6 859.0 3564 858.7

NSSW715 1 29+17 1746 283.2 12.7 6 - 2005 -

NSSW715 2 23+26 1294 282.9 10.8 6 - 1559 -

NSSW730 95 2659 - 20.7 6 808.5 3146 808.1

NSSW730 1 41+0 1199 255.7 8.9 6 - 1344 -

NSSW730 2 11+43 1460 305.4 11.8 6 - 1802 -

NSSW915 95 3139 - 21.6 7 811.3 3651 811.0

NSSW915 1 43+5 1917 261.5 11.1 7 - 1822 -

NSSW915 2 9+38 1222 259.4 10.5 6 - 1829 -

NSSW930 95 3175 - 19.9 6 793.0 4224 792.5

NSSW930 1 33+9 1586 227.3 9.2 6 - 1820 -

NSSW930 2 19+34 1589 311.8 10.7 6 - 2404 -

NSSW1115 95 2572 - 18.3 7 809.9 3484 809.5

NSSW1115 1 42+9 1343 232.1 8.8 7 - 1878 -

NSSW11152 10+34 1229 233.5 9.5 7 - 1606 -

NSSW1130 95 3396 - 18.8 7 794.1 4107 793.8

NSSW1130 1 34+8 1746 255.5 9.1 5 - 2051 -

NSSW1130 2 18+35 1650 234.2 9.7 7 - 2056 -

Table 6: Best results for GenShipI and GenShipI followed by ALNS

days at sea are much larger than the corresponding results for all the sequential
approaches. CPU time is also much larger than the one obtained by the sequen-
tial approaches Seq+ALNS and SeqPlus+ALNS. In spite of the possible benefits
of integrating all the decisions, the proposed integrated approach is clearly out-
performed by all sequential approaches. Handling the whole SROP instead of
two partial SROPs results in larger problems to be optimized by the genetic
algorithm. Although we believe that the dimension issue is mainly responsible
for a large CPU, we think that the explanation of the poor results is intrinsic
to the genetic algorithm design. For the sequential approaches, the compulsory
visit to the nearest port, at most one per circuit, has been well ’understood’ by
the genetic algorithm, matching well with the chosen codification and fitness
evaluation, guiding the algorithm towards promising solutions. On the other
hand, when we consider the whole set of fishing stations, dealing in a similar
way with the compulsory visits to the ports, the genetic algorithm had difficulty
to balance this issue with the minimization of the completion time as well as
with the allocation of the visit to the port of Lisbon at the end of the first
circuit. The resulting solutions in table 6, despite the improvement, are poor
and have large ”geographic jumps”. The ALNS procedure was able to eliminate
some of these jumps but this was not enough to obtain good quality solutions.
Figure 4 shows the solutions given by SeqPlus(+ALNS) and GenShipI(+ALNS)
for the instance NSSW915. One can visually assess the difference in the quality
of the solutions produced by both methods. The improvement obtained by the
ALNS procedure in the GenShipI solution is clear but it is also obvious that the
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resulting solution is poorer than SeqPlus+ALNS solution or even than SeqPlus
solution.

SeqPlus SeqPlus+ALNS

GenShipI GenShipI+ALNS

Figure 4: Comparing solutions: instance NSSW915

We believe that the codification of the solutions and the fitness evaluation
did not match. If so, to obtain better solutions a different codification and/or
fitness evaluation should be considered.

In order to assess the quality and applicability of SeqPlus+ALNS solutions,
we have analyzed the route followed by the ship in previous surveys. We noticed
that in real situations the maximum number of fishing stations visited in one
day (”Max visit/day”) was about 6, which is less than the corresponding value
given by SeqPlus+ALNS for all scenarios. For such days, we saw that in real
solutions the ship traveled distance was greater than the traveled distance given
by SeqPlus+ ALNS solutions. This improvement in the traveled distance allows
to visit more fishing stations, in one day and, consequently, it also allows that
the all survey is completed in less days.

With regard to the two different values that were considered for the param-
eter ε, for ε = 15, associated with new equipment, algorithm SeqPlus+ALNS
points to an average saving of 5.7 hours in the completion time of each circuit.
This average savings goes up to 18.7 hours for the Seq+ALNS algorithm and
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rises 21.2 hours for Varfix&Branch-and-Bound+ALNS algorithm.

5 Conclusions

In this paper, optimization techniques are used to determine the route of a re-
search vessel that performs a sampling survey to study the abundance of fish
species. Environmental concerns and management and staff preferences com-
bined with specific problem requisites concerning the duration of the route and
time windows for the sampling survey in each fishing station guided the search
for SROP solutions. The goal was to obtain solutions that minimize the trav-
eled distance, to reduce fuel consumption and the consequent environmental
pollution related to environmental emissions and sea pollutants, and minimize
route completion time, a management and staff preference. We present a math-
ematical formulation that highlights three combinatorial subproblems included
in SROP, namely a clustering, a routing and a scheduling subproblem. To solve
SROP and taking into account this underlying structure, we propose two se-
quential approaches, Seq and SeqPlus, both using a two phase algorithm. In
Seq a genetic algorithm, GenClusR, solves the clustering and routing subprob-
lems in phase 1 and a greedy procedure is used in phase 2 to solve the scheduling
subproblem. SeqPlus uses the genetic algorithm GenClusR to define the clusters
in phase 1 and, for each cluster, uses the genetic algorithm GenRSched to solve
an integrated routing and scheduling subproblem in phase 2. Although Seq
and SeqPlus produced good quality feasible solutions for SROP in short CPU
time, SeqPlus outperforms Seq, mainly due to the fact that SeqPlus solutions
have shorter completion times and similar traveled distances. These results
suggest that further integration might be worth investigating leading to the de-
velopment of a third approach, GenShipI, integrating the three subproblems.
Unfortunately, GenShipI yielded very poor quality solutions pointing towards a
different codification of the solutions and/or a different fitness evaluation. As a
final step we propose an ALNS procedure to improve the quality of the solutions
obtained by all the above referred approaches. The ALNS showed to be able to
decrease the traveled distance in short CPU providing some robustness to the
solutions in order to include daily drawbacks. As a final remark we would like
to point out that algorithm SeqPlus+ALNS proved to be a suitable tool to solve
SROP under different scenarios which may cover different weather conditions
as well as new fishing operations conditions.
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