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Abstract

This paper addresses the problem of residential waste collection, as a real life application
of a sectoring-arc routing problem (SARP). The aim is to design the service area and the
set of planned trips for each vehicle, whilst minimising a stated objective. The sectoring-arc
routing problem simultaneously handles both tactical and operational decisions – sectors
and the planning of vehicle trips – and thus avoids successive sub-optimisation. In order
to obtain solutions that satisfy features required by real life applications, three criteria are
taken into account: total routing time, workload time imbalance between sectors, and service
connectivity within each sector. We propose a two-phase heuristic which favours solutions
in which total routing time and the non-connectivity of the service area of each vehicle are
minimised. A hill climbing and a tabu search based heuristic are also derived. By means of a
normalised, weighted sum of criteria for evaluating solutions, the local search heuristics were
tailored to maintaining the best features of the initial solutions, whilst minimising workload
time imbalance. The algorithms are tested in random instances and also in real life based
instances. The results show that combining the two-phase heuristic with a local search
method is an efficient way of obtaining good quality solutions to implement in practice:
namely connected service areas with a balanced workload that result in a negligible increase
in total routing time. They also highlight that the proposed function for evaluating solutions
during the search phase plays an essential role.

Keywords: Routing, District design, Heuristics, Capacitated arc routing.

1. Introduction

Waste collection systems cover different types of waste, such as residential, commer-
cial, recyclable or skip waste. Depending on the characteristics and location of the waste
containers, vehicle trips are tackled via node or arc routing problems.

∗Corresponding author.
Email addresses: maria.cortinhal@iscte.pt (Maria João Cortinhal), cmourao@iseg.ulisboa.pt

(Maria Cândida Mourão), catarina.nunes@iscte.pt (Ana Catarina Nunes)

1



This paper addresses a residential waste collection problem, in which waste is collected
along the streets by a fixed number of capacitated vehicles. Thus, a capacitated arc routing
approach is considered. Moreover, depending on streets size and on traffic rules, some streets
can only be serviced in one direction, whereas others demand collection on both sides and
in both directions. Large one-way streets need to be represented by multiple segments, and
consequently the street network is represented by a mixed multigraph.

This research work was motivated by real life applications. Therefore, the design of
vehicle trips is threefold. Firstly, it should optimise total routing time. Secondly, the street
network must be partitioned into a fixed number of sub-regions (also called sectors, or
service areas), all with similar workload times, and each sub-region should be as connected
as possible. Thirdly, each sector must be serviced by a single capacitated vehicle, which
performs one or more trips within a limited workload time due to labour regulations. It
should be noted that improving connectivity, whilst at the same time imposing a time limit
on sectors, promotes solutions in which service areas are both geographically concentrated
and grouped into delimited regions.

The problem under analysis can thus be modelled as a sectoring-arc routing problem
(SARP) (Mourão et al., 2009). The SARP combines a sectoring problem (also known as
districting, district design, or territory design) with an arc routing problem (ARP). More
precisely, in this study a mixed capacitated arc routing problem (MCARP) is tackled, as the
street network is a mixed one and vehicle capacity is limited. The capacitated arc routing
problem (CARP) is an optimisation problem that was first introduced by Golden and Wong
(1981) for undirected networks. As the CARP is a NP-hard problem (Golden and Wong,
1981), so is the MCARP, and thus the SARP is also, as the latter reduces to the former,
if only one sector is considered. Therefore, for large sized instances, heuristic methods are
the most suitable approach for obtaining high-quality solutions in reasonable computational
time.

In this paper we propose a two-step solution method that has been devised to build
high-quality solutions that can be put into practice by practitioners. The first step consists
of a two-phase heuristic that constructs initial solutions by minimising the total routing
time, whilst favouring connectivity within the service areas. The second step is an improve-
ment method, which is designed to provide better balanced sectors, whilst keeping, or even
enhancing, whenever possible, the good characteristics of the sectors that were developed
in the first step. For this purpose we suggest two local search algorithms, one of which is
based on hill climbing, and the other of which is a tabu search. Both local search algorithms
make use of a weighted function to evaluate solutions during the search process. To take the
planning criteria suggested by the practitioners into account, this function integrates three
different measures of quality. Furthermore, as a means of increasing the performance of the
local search algorithms, which requires computation times that generally increase with the
dimension of the instances, the list of possible moves within the neighbourhood is restricted
by means of a time-distance measure, which is similar to the restricted candidate list used
in the construction phase of the GRASP metaheuristic (Feo and Resende, 1995).

To the best of the authors’ knowledge, the solution methods suggested in this paper have
never been addressed in the literature on the SARP. Moreover, this paper contributes to the
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literature in this field by providing some insights into the benefits of integrating different
measures of quality for evaluating solutions during the search process.

The remainder of this paper is organised as follows: in Section 2 we review the related
literature, and in Section 3 the problem is described; the constructive two-phase heuristic
and the local search solution methods are detailed in Sections 4 and 5 respectively; and then
the computational results are summarised and analysed in Section 6, before the conclusions,
which are given in Section 7.

2. Literature review

The construction of trips has been widely addressed in the literature, most of which is
devoted to node routing approaches, as may be confirmed in Golden et al. (2008), and in
Toth and Vigo (2014). Extensive surveys regarding arc routing can be found in Dror (2000),
Wøhlk (2008), Corberán and Prins (2010), and Corberán and Laporte (2014).

The design of sectors has been considered for multiple purposes, such as political district-
ing (Bozkaya et al., 2003; Bação et al., 2005), commercial territory design (Rı́os-Mercado
and Fernández, 2009; Jarrah and Bard, 2012; Salazar-Aguilar et al., 2012), road maintenance
(Muyldermans et al., 2003; Perrier et al., 2008), meter reading (Assis et al., 2014) and also
waste collection (Teixeira et al., 2004; Lin and Kao, 2008; Mourão et al., 2009; Constantino
et al., 2015).

Partitioning problems for routing purposes usually demand some degree of specificity.
Among these, connectivity appears within each sector and sectors balance. As pointed out
by Perrier et al. (2008), each sector must be balanced in workload, and should be contiguous
in the sense that the subgraph induced by its demand units should be connected.

Sectors balance is a feature which is required to obtain sectors similar in size. In the
literature, several balance measures have been considered, such as the ones based on: i) trips
duration (Kim et al., 2006; Mourão et al., 2009) or on its estimate (Gonzalez-Ramı́rez
et al., 2011); ii) the length of the links serviced (Perrier et al., 2008); iii) the quantity
serviced (Mourgaya and Vanderbeck, 2007; Salazar-Aguilar et al., 2012); iv) a relationship
between quantity and travelled distance (Teixeira et al., 2004; Lin and Kao, 2008), or; v) on
the number of customers (Salazar-Aguilar et al., 2012). Despite being different, all these
measures are meant to evaluate the workload assigned to each sector. Therefore, to some
extent, sectors balance increases the chance of a fair distribution of workload amongst the
different members of the team.

In the literature, sectors balance is promoted through different ways, namely: i) by con-
straints that impose upper bounds on cost (Haugland et al., 2007), on the demand (Mourgaya
and Vanderbeck, 2007), or on the length of each sector (Perrier et al., 2008); ii) by tailored
evaluation functions (Lin and Kao, 2008; Rı́os-Mercado and Fernández, 2009; Gonzalez-
Ramı́rez et al., 2011; Salazar-Aguilar et al., 2012; Assis et al., 2014), or; iii) sometimes by
the solution method as a whole (Teixeira et al., 2004; Kim et al., 2006; Mourão et al., 2009).

Leaving sectors apart, the balancing requirement is also referenced in the routing liter-
ature that discusses the construction of vehicle trips. For instance, both Jozefowiez et al.
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(2009) and Oyola and Løkketangen (2014) address the capacitated vehicle routing prob-
lem with trip balancing. In this extension of the problem, two minimisation objectives are
tackled: the difference between the longest and the shortest trip length (makespan), and
also the usual total length.

The connectivity within each sector is related to the contiguity of its demand units, and
therefore to the possibility of reaching each other within their service area. For this purpose,
some authors suggest constructive heuristics that consider specific rules to select and add
the demand units to a sector, which additionally favour the concentration of each service
area in a geographical sub-region (Muyldermans et al., 2003; Haugland et al., 2007; Mourão
et al., 2009), while Constantino et al. (2015) propose exact and heuristics methods based on
models that evaluate the node overlapping of different service zones. These characteristics
enable both service specialisation and the allocation of responsibilities to work teams.

Other authors consider connectivity explicitly as a constraint, as is the case of the local
search based methods of Rı́os-Mercado and Fernández (2009) and Lei et al. (2012). On
the other hand, the heuristic solution methods proposed by Perrier et al. (2008) consist of
solving MILP models in which connectivity is explicitly imposed by linear constraints.

As referred to earlier, the SARP addressed in this paper is a problem which involves
simultaneous tactical and operational decisions and, respectively, sectors design and the
planning of vehicle trips. The idea is to avoid successive sub-optimisation by embedding
operational activities, or their estimates, in strategic or tactical decisions (see e.g. Salhi and
Rand, 1989; Simchi-Levi, 1992; Cattrysse et al., 1997; Ghiani and Laporte, 2001). Mainly
focussed on strategic and tactical issues, Ghiani et al. (2014) survey waste management
systems.

Few studies combine the design of service areas with the definition of trips, as is the case
of Teixeira et al. (2004), Kim et al. (2006), or Ramos and Oliveira (2011) for node routing
applications, and Mourão et al. (2009), or Constantino et al. (2015) for the arc routing case.

The heuristic solution approach of Teixeira et al. (2004) for a recyclable waste collection
case study is a constructive three phase method which aims to minimise operation costs.
Firstly, a zone per vehicle is defined, taking the area and the population into account, in
order to balance their collection effort. Then, for each sector, the last two phases determine
the type of waste to be collected, and a single trip for each day of the month.

Kim et al. (2006) address a case study for a commercial waste collection vehicle routing
problem with time windows. The aim is to group stops into clusters, and to then build
a single vehicle trip for each cluster, whilst minimising total travel time. The authors
propose an extended insertion algorithm and a clustering-based algorithm, both of which are
enhanced with a simulated annealing improvement method. The clustering-based algorithm
promotes the workload balance of the routes and also improves the proximity among the
stops of the same route.

In their recyclable waste collection case study, Ramos and Oliveira (2011) present a
constructive heuristic which simultaneously obtains the service area for each depot and also
vehicle trips. Based on an estimated collecting time, the main goals are the minimisation of
the distances and the balancing of workload at the depots.

Mourão et al. (2009) developed three heuristics for a sectoring arc routing problem.

4



Sectors are limited in their workload time and the aim is to minimise total routing time.
The heuristics promote connectivity, as well as workload time balance among sectors. A
best insertion method builds sectors and vehicle trips simultaneously. In the two-phase
heuristics, the sectors are built in phase 1 by two alternative procedures, both of which
consider workload time estimates. Phase 2 executes a mixed CARP heuristic to obtain the
vehicle trips within each sector.

Focused on real life applications, Constantino et al. (2015) developed solution methods
for the mixed capacitated arc routing problem with limited overlapping of the vehicle service
routes. The proposed exact and heuristic methods are based on MILP models, in which an
upper bound is imposed on the number of nodes shared by different routes. This upper
bound is previously obtained via MILP models that minimize the number of nodes shared
by different vehicle services.

Although the design of vehicle trips is not included, the design of service areas for routing
approaches may benefit from considering routing estimates (trip cost or duration). To
illustrate this, we refer to Haugland et al. (2007), Jarrah and Bard (2012), and Lei et al.
(2012), all of whom study sector design methods for stochastic vehicle routing problems.

3. Problem description

The household waste collection problem studied focused on what can be described as
follows; a network represents the street segments (links), some of which require a service
(waste collection), whilst others do not (no waste collection). Each required street segment,
which is also named as a task, is symbolised: i) by one edge, if it is a narrow two-way street
that allows simultaneous collection for each of its two sides (zigzag or parallel collection);
ii) by two opposite arcs, if it is a large two-way street, with each side collected separately;
iii) by one arc, if it is a one-way street, or; iv) by two parallel arcs, if it refers to a large
one-way street that must be serviced twice, once for each side. Each task has a service
time, which measures the time for collecting its waste. As some required street segments
need to be represented by edges, a special data structure is used and each edge u = (i, j)
is then replaced by two inverse linked arcs, u and inv(u) = (j, i) (Lacomme et al., 2001).
Henceforward, we therefore refer to required edges as arcs.

The non-required street segments, or deadheading links, are always represented by one arc
or two arcs, depending on whether they relate to a one-way or two-way street, respectively.
Furthermore, deadheading is allowed, which means that even required streets can be tra-
versed without being serviced. Therefore, each arc has a deadheading time, which represents
the time required to traverse it.

A homogeneous fleet of K vehicles is used, each with a limited capacity of W . The fleet
is based at a single depot, which also represents the disposal facility (dumpsite) where the
vehicles are emptied. The time required to empty a vehicle is referred to as dump time.

Let us define a feasible vehicle trip as being a tour to and from the depot, including the
service of some tasks within the vehicle’s capacity. Thus, a vehicle service is a set of feasible
vehicle trips, and its workload time is the time required to complete the vehicle’s service,
which includes the times for the service, deadheading and the dump. As a crew is assigned
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to each vehicle, and bearing in mind that labour regulations impose a limit on their working
period, a fixed workload time limit of L per vehicle is considered.

Given the aforementioned network of street segments and also the homogeneous fleet of
K vehicles, the problem consists of determining a set of K sectors and a feasible vehicle
service per sector, such that each task is serviced by one trip only, whilst minimising the
following criteria: i) total routing time; ii) workload time imbalance, and; iii) the number
of connected components in the subgraph induced by the tasks.

Total routing time (TT ) measures the time required to perform all the trips in all the
sectors, which equates to the sum over all the sectors of the workload times. It should
thus be minimised, in order to reduce operational costs. Workload time imbalance (WIB),
on the other hand, provides the difference between the workload time of the longest and
the shortest sectors. This measure is related to fairness among the services provided by
the vehicle crews, i.e., smaller values point to similar workload times that are assigned
to different vehicle crews. Lastly, the number of connected components (CC) equals the
number of connected components of each sector, over all sectors. Its minimisation increases
connectivity, and thus it is used to pursue better designed solutions.

4. A two-phase heuristic: MTP

In this section we present the two-phase heuristic MTP. MTP’s aim is to partition the
graph into a given number of sectors, and then to build the trips within each sector, whilst
minimising total routing time.

The MTP is a modified version of the TPH two-phase heuristic that is suggested by
Mourão et al. (2009). TPH proved to be an efficient heuristic, if total routing time and
workload time imbalance are the characteristics in focus. However, for practical applications,
such as the one under study in this paper, other sector features should also be considered,
such as their connectivity. Therefore, the purpose of MTP is to fill this gap.

Both TPH and MTP share the following sequence. In Phase 1, known as the sectoring
phase, all the sectors are initialised as empty sets, and then each task is iteratively assigned
to one sector. In Phase 2, which is the routing phase, those vehicle trips that minimise
total routing time are identified. The difference between TPH and MTP relies on Phase 1,
namely by the way in which the tasks are assigned to sectors.

4.1. Phase 1: sectoring

To partition the graph into sectors, the MST heuristic is proposed, as this is designed
to promote solutions in which the demand graph within each sector is connected, whilst
minimizing total routing time. MST is a modified version of the single task heuristic (STH)
of Mourão et al. (2009). Next, the common parts of both heuristics are first described, and
then their differences are highlighted.

Let us define an open sector as being a sector that remains available for expansion, and
is otherwise closed. The process starts by defining K empty and open sectors. Then, K
seed-tasks are selected by means of a seed-task selection rule that spreads the seeds over the
entire network, and each one is assigned to a different sector.
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An iterative process is then applied for the assignment of the remaining tasks to sectors.
For each iteration, the open sector k with the smallest workload time estimate is selected for
expansion. This workload time estimate, which is given by WE(k), is based on preliminary
trips, computed via the best insertion position for each task. Afterwards, a single unassigned
task is selected, according to a task selection rule for expanding sectors, and the state of
the sectors (open or closed) is then updated. The iterative process is repeated until all the
tasks are assigned. It should be noted that sectors are built in parallel, in order to promote
their workload time balance.

Both task selection rules – the seed-task selection and the task selection for expanding
sectors – make use of a time distance measure, and thus the U-distance proposed in Mourão
et al. (2009, Sec. 2.3) is used. For each pair of tasks (u, v), let Duv be the distance from
u to v, computed by the shortest deadheading time distance from u to v, excluding the
deadheading times of u and v. As the base network is mixed, and given that each required
edge is represented by two linked inverse arcs, u and inv(u) = (j, i), the U-distance Uuv is
computed by the minimum among at most eight shortest deadheading distances, as follows:
Uuv = min{Du,v; Du,inv(v); Dinv(u),v; Dinv(u),inv(v); Dv,u; Dv,inv(u); Dinv(v),u; Dinv(v),inv(u)}.

To pursue the goal of sectors connectivity, MST modifies: i) the task selection rule to
expand a sector, and; ii) the criteria for closing a sector.

More precisely, at each iteration of MST, the task closest to the seed-task of sector k is
selected among the unassigned tasks that share a node with at least one of the tasks already
assigned to sector k. If such a task exists, then the assignment becomes definitive, and
WE(k) is updated. Otherwise, the sector is considered closed, as no more unassigned tasks
could ensure its connectivity. It should be noted that, in this way, the sectors can all be
closed before the complete assignment of all the tasks. This may happen, for instance, when
the demand graph is not connected. In such cases, all sectors are reopened once again, and a
new rule is defined to assign the remaining unassigned tasks to sectors: given an open sector
k, the unassigned task closest to the seed-task of sector k is selected, and a new connected
component of tasks is initialised for sector k.

With regards to STH, the unassigned task closest to the seed-task of sector k is selected
(thus it does not have to share nodes with the tasks already assigned to the sector), and
WE(k) is recomputed. If WE(k) does not exceed the time range L, then the task is assigned
to sector k, otherwise sector k is considered closed, and the task remains unassigned.

A complete description of STH, as well as that of the time distance measure, the seed-task
selection rule, and the workload time estimate, can be found in Mourão et al. (2009).

Due to the aforementioned differences, STH and MST promote solutions with different
features. If the demand graph is connected, MST tends to generate solutions in which tasks
within the same sector form a unique connected component, however it does not guarantee
that the workload time estimate of each sector will not exceed the time range L. In turn,
STH generates sectors with a workload time estimate that never exceeds L (although it may
be exceeded later on, during the routing phase), but which may include several connected
components per sector. Thus, whilst MST favours solutions with better connected sectors,
STH tends to find solutions with a smaller workload time imbalance.

7



4.2. Phase 2: routing

In Phase 2, trips are determined by taking into account the assignments made during
Phase 1, as in Mourão et al. (2009). For this purpose, the MCARP improvement merge
(IM) heuristic suggested by Belenguer et al. (2006) is applied within each sector. The IM
heuristic is an improvement of the extended augment merge (EAM) heuristic of Lacomme
et al. (2004), which, in turn, extends to the MCARP the classical augment-merge heuristic
of Golden and Wong (1981).

5. Local search heuristics

The two-phase heuristic MTP proposed in Section 4 has two major drawbacks: the range
time constraints may be violated, which means that an infeasible solution can be identified;
and the workload time imbalance may be too high (see Table 4 and Table 6, Section 6).
To overcome these weaknesses, we devised a hill climbing heuristic HC, and a tabu search
heuristic TS. Both HC and TS are tailored for minimising the imbalance, whilst maintaining
the good features of the solution provided by MTP.

To pursue this objective, the evaluation of each incumbent solution S during the search
process is computed by the following normalised weighted sum:

Eval(S) = βTT ∗ TT (S)− LB

UBTT − LB
+ βCC ∗ CC(S)−K

UBCC −K
+ βWIB ∗ WIB(S)

UBWIB
(1)

The Eval(.) function combines three measures: i) total routing time TT (.); ii) total
number of connected components CC(.), and; iii) workload time imbalance WIB(.). To
ensure that all the measures have the same level of importance, the original values are scaled
down to similar ranges, via lower bounds (LB and K), and upper bounds (UBTT , UBCC ,
and UBWIB). LB represents the best-known lower bound for the MCARP (Belenguer et al.,
2006; Gouveia et al., 2010), K is the given number of sectors, whereas UBTT , UBCC , and
UBWIB respectively measure the total routing time, the number of connected components,
and the workload time imbalance of the initial solution.

Furthermore, each criterion is weighted by a β ∈ {0, 1} parameter, namely βTT , βCC , and
βWIB, which allows the corresponding criterion to be, or not to be, considered for evaluating
solutions. Better solutions thus present smaller values of Eval(.).

Local search heuristics are designed to investigate solutions in the neighbourhoodN(S) of
the current solution S, and then to move to the best neighbour in pursuit of the best solution.
The neighbourhood of a solution is identified by means of small perturbations (moves) made
over it. In the proposed local search heuristics, two different moves between a pair of tasks
are considered: Change(.) and Swap(.). Given a solution S and the two tasks u and v,
Change(S, u, v) moves task v to the same trip as task u, and after it, whereas Swap(S, u, v)
exchanges the position of tasks u and v. The number of moves to be evaluated at each
iteration increases with the number of tasks and sectors. Additionally, the evaluation of
each neighbour solution obliges the re-computation of the number of connected components,
with an associate high computational effort. To overcome this problem, only a subset of
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moves is considered. The moves are stored in a restricted moves list (RML), similar to the
restrictive candidate list that is proposed for the construction phase of the GRASP (Feo and
Resende, 1995).

Given a solution S, consider all pairs of tasks (u, v) such that u and v belong to different
sectors. For these pairs, let Dmax and Dmin be the maximum and the minimum of the Duv

distances, respectively. Then, RML(S) includes the pairs of tasks (u, v) by non-decreasing
order of the Duv distances, such that Duv ≤ Dmin + δ × (Dmax − Dmin), with δ ∈ [0, 1].
However, even with this RML list, each iteration can be very time consuming. Therefore,
a first improvement strategy is adopted, which means that the current solution is moved to
a neighbour solution as soon as an improving solution is found.

As is observed with the computational results, the drawbacks of MST can be repaired by
HC and TS, owing to their ability to provide feasible solutions with better balanced sectors.
Next, Sections 5.1 and 5.2 respectively provide the description of HC and TS.

5.1. A hill climbing heuristic: HC

The HC is a hill climbing heuristic, which means that a neighbouring solution is accepted,
only if it is better than the current one. The iterative search process is repeated until a
maximum number of iterations (MaxIt) is reached, or until all neighbour solutions of the
current one are non-improving solutions. The output solution is the best one found during
the search process. Algorithm 1 summarises the general framework of HC.

Algorithm 1 The HC algorithm
Input: S ◃ Input solution
Input: MaxIt ◃ Maximum number of iterations
1: CostS ← Eval(S)
2: It← 1 ◃ Counter for iterations
3: repeat
4: Create RML(S)
5: CostBestN ← +∞ ◃ Initialises the cost of the best neighbour solution
6: repeat
7: Remove the first pair of tasks (u, v) from RML(S)
8: NCh(S)← Change(S, u, v) ◃ Apply the change move
9: NSw(S)← Swap(S, u, v) ◃ Apply the swap move
10: if (NCh(S) is feasible and Eval(NCh(S)) < CostBestN ) then
11: CostBestN ← Eval(NCh(S)), BestN ← NCh(S)
12: end if
13: if (NSw(S) is feasible and Eval(NSw(S)) < CostBestN ) then
14: CostBestN ← Eval(NSw(S)), BestN ← NSw(S)
15: end if
16: until (RML(S) is empty or CostBestN < CostS)
17: FlagMove← true
18: if CostBestN < CostS then
19: S ← BestN , CostS ← CostBestN

20: FlagMove← false
21: end if
22: It← It+ 1
23: until (FlagMove or It > MaxIt)
Output: S ◃ Best solution found
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5.2. A tabu search heuristic: TS

As is usually the case with this class of methods, the major drawback of the HC proposed
here, is that it can easily be trapped in a local optimum. This problem can be diminished
through applying more sophisticated methodologies, such as tabu search (Glover and La-
guna, 1997). Tabu search uses an adaptive memory to escape from local optima. It seeks
better solutions by allowing non-improving moves through an adaptive memory called tabu
list. Algorithm 2 summarises the general framework of the TS algorithm.

Algorithm 2 The TS algorithm
Input: S, TabTen, MaxIt, MaxImpIt ◃ Input solution, tabu tenure, and stopping criteria
1: It, IterImp← 1 ◃ Counters for iterations
2: TabuList = {}
3: CostS , CostBest ← Eval(S)
4: Best← S
5: repeat
6: Create RML(S)
7: CostBestN ← +∞
8: repeat
9: Remove the first pair of tasks (u, v) from RML(S)
10: NCh(S)← Change(S, u, v) ◃ Apply the change move
11: NSw(S)← Swap(S, u, v) ◃ Apply the swap move
12: if NCh(S) is feasible then
13: if (Change(S, u, v) ̸∈ TabuList and Eval(NCh(S)) < CostBestN ) then
14: CostBestN ← Eval(NCh(S)), BestN ← NCh(S)
15: else if (Change(S, u, v) ∈ TabuList and Eval(NCh(S)) < CostBest) then
16: if (Eval(NCh(S)) < CostBestN ) then
17: CostBestN ← Eval(NCh(S)), BestN ← NCh(S)
18: end if
19: end if
20: end if
21: if NSw(S) is feasible then
22: if (Swap(S, u, v) ̸∈ TabuList and Eval(NSw(S)) < CostBestN ) then
23: CostBestN ← Eval(NSw(S)), BestN ← NSw(S)
24: else if (Swap(S, u, v) ∈ TabuList and Eval(NSw(S)) < CostBest) then
25: if (Eval(NSw(S)) < CostBestN ) then
26: CostBestN ← Eval(NSw(S)), BestN ← NSw(S)
27: end if
28: end if
29: end if
30: until (RML(S) is empty or CostBestN < CostS)
31: FlagMove← true
32: if CostBestN < +∞ then
33: S ← BestN , CostS ← CostBestN

34: FlagMove← false
35: It← It+ 1, IterImp← IterImp+ 1
36: Update TabuList
37: if CostBestN < CostBest then
38: Best← BestN , CostBest ← CostBestN

39: IterImp← 1
40: end if
41: end if
42: until (FlagMove or It > MaxIt or IterImp > MaxImpIt )
Output: Best ◃ Best solution found

In the proposed TS, the tabu status is applied to tasks, and a tabu tenure (TabTen) is
set to define how long these tasks will remain with a tabu status. Moreover, moves involving
tabu tasks can only be accepted if they lead to solutions that are better than the best one
already found (aspiration criterion).
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The stopping criteria are a maximum number of iterations (MaxIt), a maximum number
of consecutive iterations without improvement (MaxImpIt), or no neighbour solutions are
available.

6. Computational experiments

The proposed heuristics were coded in Delphi 7, and run on a 2.9 GHz Intel CORE
i7-3520M CPU with 8 GB RAM.

Computational experiments were performed on two sets of instances. The first set,
hereafter named as slpr, is based on the lpr instances introduced by Belenguer et al. (2006)
as random MCARP instances that mimic street networks. These lpr instances were then
transformed into SARP ones by adding two parameters: the number of sectors (K); and the
maximum workload within each sector (L), which is considered fixed and equal to 21, 600
seconds. Moreover, it is assumed that a fleet of homogeneous vehicles, with capacity (W )
equal to 10, 000 kilograms, is available at the depot node.

Table 1 lists the characteristics of the 15 slpr instances, namely the number of nodes,
links, required edges, required arcs and sectors. A more detailed description of these in-
stances can be found in Mourão et al. (2009).

Table 1: Characteristics of the slpr instances.
number of

instance nodes links required edges required arcs sectors
slpr-a-01 28 94 0 52 2
slpr-a-02 53 169 5 99 2
slpr-a-03 146 469 33 271 4
slpr-a-04 195 651 34 469 7
slpr-a-05 321 1056 58 748 12
slpr-b-01 28 63 5 45 2
slpr-b-02 53 117 9 92 2
slpr-b-03 163 361 26 279 5
slpr-b-04 248 582 8 493 8
slpr-b-05 401 876 37 764 13
slpr-c-01 28 52 39 11 2
slpr-c-02 53 101 77 23 2
slpr-c-03 163 316 241 61 6
slpr-c-04 277 604 362 142 9
slpr-c-05 369 841 387 416 14

The second set, named as seix, includes nine instances – seix1 to seix9–, generated from
a refuse collection network in Seixal, a municipality near Lisbon, Portugal. These instances
are all derived from the same street network and differ in the number of sectors, vehicle
capacity, and workload time limit, as depicted in Table 2.

To evaluate the performance of the proposed heuristics, total routing time (TT ) in
seconds, the number of connected components (CC), workload imbalance (WIB) in seconds,
and the cpu running time (tcpu) in seconds, are all presented. For sake of simplicity, and
if applicable, we also provide some percentage gaps for the total routing time, namely:
LBgap, and UBgap. The lower bound gap is defined as LBgap = TT (H)−LB

LB
× 100%, where

LB accounts for the best-known MCARP lower bound (Belenguer et al., 2006; Gouveia
et al., 2010), and TT (H) for the total routing time of the best feasible solution provided

11



Table 2: Characteristics of the seix instances.
number of time vehicle

instance nodes links required edges required arcs sectors limit capacity
seix1 106 214 84 52 2 18000 3000
seix2 106 214 84 52 2 18000 5000
seix3 106 214 84 52 2 18000 10000
seix4 106 214 84 52 3 14400 2000
seix5 106 214 84 52 3 14400 3000
seix6 106 214 84 52 3 14400 5000
seix7 106 214 84 52 4 10800 1000
seix8 106 214 84 52 4 10800 2000
seix9 106 214 84 52 4 10800 3000

by one of the local search heuristics (HC or TS). In turn, the upper bound gap is given

by UBgap =
TT (MTP )−TT (H)

TT (H)
× 100%, with TT (MTP ) being the total routing time obtained

through the two-phase heuristic MTP.

6.1. Parameters tuning

The parameters for HC and TS were tuned via a computational study. The reasoning
behind this study was to find the best set of parameters, i.e. the one that provides the best
average results for all the criteria evaluated. For this purpose, slpr instances were used.
Moreover, the maximum number of iterations (MaxIt), and, if applicable, the maximum
number of iterations without improvement (MaxImpIt), and tabu tenure (TabTen) were
respectively set to 1, 000; 100 and 7. By varying δ ∈ {0, 0.5, 1} and the β parameters (βTT ,
βCC , βWIB ∈ {0, 1}), a total of 21 distinct settings were tested.

This first experiment allowed us to conclude that: i) it is sufficient to limit MaxIt,
and MaxImpIt to 600 and 40 iterations respectively; ii) δ = 0 always provides the worst
results, whereas δ = 1 is quite time consuming, with average results sometimes worse than
for δ = 0.5, and; iii) the inclusion of all the criteria, by setting the β parameters to 1, is
mandatory for the good performance of the methods.

Accordingly, with the aforementioned conclusions (δ = 0.5,MaxIt = 600, andMaxImpIt =
40), some tuning tests were conducted for the TabTen parameter, namely setting it to 5, 7,
and 9. The average results did not highlight any significant differences, and to some extent
they were inconclusive as to which TabTen value performs better.

The aforementioned experiments brought up the subject of the influence of β parameters
on the performance of the algorithms. To study the impact of these parameters, we run
both algorithms with the setting MaxIt = 600, δ = 0.5, and, if applied, MaxImpIt = 40
and TabTen = 7. The results are reported in Table 3. The first two columns identify
the algorithm (HC or TS) and the type of values (Min, Avg, and Max respectively for
the minimum, the average, and the maximum value). Then there are three groups of four
columns, with each group representing one criterion and each column a scenario for the β
parameters. The columns are labelled as a triple, representing the values assigned to βTT ,
βCC , and βWIB respectively, which, in turn, indicate whether the corresponding criterion is
being considered (1), or not (0).

The results listed in Table 3 show that the best LBgap gaps and the best WIB values
are obtained if the corresponding β parameter is set to one, and the remaining ones are set

12



Table 3: Algorithm’s performance for different β parameter settings – slpr instances.
LBgap (%) connected components workload imbalance

TT (H)−LB
LB

CC WIB(sec)

(100) (010) (001) (111) (100) (010) (001) (111) (100) (010) (001) (111)

Min 0.90 1.53 2.92 2.11 2 2 2 2 522 39 0 3
HC Avg 3.60 4.83 7.52 5.08 15 6 20 6 5057 3244 19 1056

Max 6.89 9.21 19.44 8.89 42 14 93 14 12018 10297 93 6133

Min 0.54 1.53 4.41 2.11 2 2 2 2 560 39 0 5
TS Avg 3.30 4.86 8.58 4.98 16 6 22 6 5594 3320 8 797

Max 6.45 9.21 19.44 8.77 56 14 93 14 12645 12465 25 5828

to zero, no matter which algorithm is being considered. Regarding the number of connected
components, the best results are provided by the scenarios in which βCC = 1. Thus, it
seems crucial to take into account the number of connected components during the solu-
tion’s evaluation, no matter what are the values considered for the other β parameters. To
sum up, scenario (111) seems to be a good commitment, as by considering all the criteria
simultaneously, the obtained solutions do not appear to deteriorate the quality of each of
the individual criterion too much.

In the next two sections we provide a more detailed analysis of the algorithms’ perform-
ance on each one of the instance sets. Henceforward, all the reported results were obtained
with the following setting: MaxIt = 600, δ = 0.5, (βTT , βCC , βWIB) = (1, 1, 1), and, with
respect to TS, MaxImpIt = 40 and TabTen = 7.

6.2. Analysis for the slpr instances

Table 4 reports the results, per instance, obtained with MTP and with both local search
algorithms (HC and TS). The first column identifies the instance, and the remaining seven-
teen columns are divided into six groups. The groups, in turn, are subdivided into columns,
headed as MTP, HC, and TS, to identify the algorithm they refer to. The first three groups
provide results about total routing time. The first group, whose heading is TT (sec), lists
the total routing time, which is expressed in seconds, and the second and third groups list
the LBgap, and the UBgap (see Section 6). It is worth noting that positive UBgap percentage
gaps highlight the fact that local search algorithms were able to decrease the total routing
time provided by the MTP algorithm. The fourth group, named as CC −K, compares the
number of connected components (CC) with the number of sectors (K), while the fifth group
lists workload imbalanceWIB(sec), expressed in seconds. The last group reports CPU time,
in seconds. It is worth noting that the time for both HC and TS also includes the time for
determining the initial solution, which is the running time of the MTP algorithm.

Analysing Table 4, it can be stated that:

• Despite being computed via a MCARP lower bound, which can be a weak lower bound
for the problem at hand, the LBgap percentage gaps are relatively small, which points
to good feasible solutions. The smallest TT values are usually provided by the MTP,
as may be confirmed by the negative UBgap. Only in 4 out of 15 instances (a-05, b-01,
b-03, b-05) does TS yield the best value, being outperformed by MTP in the remaining
ones. In turn, the HC algorithm performs worse than MTP in all but one instance
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(b-05). Nevertheless, neither HC nor TS significantly increase the total routing time,
as the smaller UBgap percentage gaps are −0.57% and −0.76%, respectively.

• In all but one instance (a-03), the number of connected components matches the
number of sectors, no matter which algorithm is applied. For the a-03 instance, TS
outperforms both the MTP and HC algorithms. It is worth remarking that this in-
stance is the only one that has a demand subgraph with two connected components,
and that one of these components contains only a few number of tasks;

• With regards to the WIB criterion, the results show that both HC and TS provide
significantly better solutions than does MTP. Moreover, in 9 instances, TS outperforms
HC, which, in turn, is only better for b-01;

• As expected, running time increases with the dimension of the problem, no matter
which method is being considered. The MTP runs in a few seconds, whereas the
local search based algorithms are more time consuming. The differences between HC
and TS cpu times are certainly due to the number of iterations required until one
of the stopping criteria is reached, and also to the fact that each iteration obliges
re-computing the number of connected components, which is very time consuming.
However, the time is always less than 35 minutes, which is meaningless for the problem
being solved.

To conclude, the results depicted in Table 4 indicate that MTP provides good feasible
solutions with respect to total routing time (TT ) and to the number of connected components
(CC), but with high workload time imbalance (WIB). The local search algorithms are able
to decrease the workload time imbalance, with small increases in total routing time, whilst
maintaining, or even improving, the number of connected components. This tendency to
increase total routing time, whilst decreasing the imbalance, is quite intuitive, as imposing
a smaller imbalance can be expressed as being an additional constraint to the problem.
Leaving aside running time, which is meaningless for the problem being analysed, TS is the
local search algorithm that generally provides the best results.

To assess the efficiency of TS over the alternative approaches already reported in the
literature, namely CTH, STH and BIH (see Mourão et al., 2009), Table 5 lists the difference
between the results provided by TS and by the alternative approaches for each one of the
criteria being evaluated. Thus, negative values mean that TS performs better than the
alternative approach. The results are divided into three groups, one for each criterion. In
Mourão et al. (2009) the number of connected components is not reported. Thus we had to
compute them by re-running the three aforementioned approaches: CTH, STH and BIH.

In Table 5 it can be seen that TS yields not only the smallest workload imbalances in
all but 2 instances (a-05 and b-05), but also the lowest number of connected components in
all the cases. In fact, the decrease of the CC criterion is quite significant for the large-sized
instances, whilst CTH, STH, or BIH equal the CC value obtained by TS only for few of
the small-sized instances. Furthermore, these improvements are generally accompanied by a
decrease in total routing time for the large-sizes instances, whilst an increase is observed for
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Table 5: Comparing TS with previous approaches – slpr instances.
TT (sec) CC WIB(sec)

instance TS–CTH TS–STH TS–BIH TS–CTH TS–STH TS–BIH TS–CTH TS–STH TS–BIH

slpr-a-01 174 94 110 -1 0 0 -26 -172 -138
slpr-a-02 222 246 -248 -2 -2 -2 -126 -270 -82
slpr-a-03 619 732 -835 -5 -4 -4 -452 -698 -383
slpr-a-04 680 -645 -2341 -20 -18 -18 -572 -777 -411
slpr-a-05 -3024 -4961 -7279 -35 -26 -26 4523 4712 4957
slpr-b-01 69 -64 49 -1 -2 -2 -139 -180 -93
slpr-b-02 118 10 -487 0 0 0 -786 -26 -135
slpr-b-03 200 -704 -1352 -10 -5 -5 -677 -142 -198
slpr-b-04 2206 -1174 -2681 -22 -15 -15 -818 -748 -299
slpr-b-05 -3710 -12072 -15427 -65 -83 -83 2850 4987 5324
slpr-c-01 154 8 19 0 0 0 -234 -208 -103
slpr-c-02 280 428 101 0 0 0 -248 -196 -245
slpr-c-03 282 395 -1066 -6 -10 -10 -488 -193 -339
slpr-c-04 -1317 -1453 -3735 -10 -21 -21 -623 -923 -640
slpr-c-05 -1562 -1785 -6082 -20 -31 -31 -827 -583 -244

the small-sized ones. With regards to instances a-05 and b-05, total routing time decreases
and the number of connected components is substantially smaller, despite the increase of the
WIB criteria, which indicates solutions that possess better characteristics from a practical
point of view.

From a more managerial perspective, we can conclude that TS provides better quality
solutions than the previous approaches. In general, sectors are better balanced, which reveals
an improvement on fairness amongst crews. Furthermore, a smaller number of connected
components point to sectors that are geographically located in more delimited areas, which
is also a benefit for waste collection management.

6.3. Analysis for the seix instances

Table 6 summarises the results, per Seixal instance, yielded by MTP, HC, and TS.
As can be observed, MTP always provides the best total routing time. Nevertheless, the

UBgap percentages are higher than −0.68 in all but one instance (seix7), which indicates
acceptable increases in the TT values. The differences between HC and TS are meaningless:
TS is better than HC in 4 out of 9 instances, the largest difference being 20 seconds; and
is worse in 3 cases, the largest difference being 67 seconds. All the methods reach the
minimum number of connected components, which is the number of sectors. Both local
search methods obtain solutions with much smaller workload imbalances than that of MTP.
These differences are particularly significant for the instances with 4 sectors (seix7−seix9),
in which the WIB decreases from about more than 50 minutes, to less than 5 minutes.
Taking into account all the three criteria simultaneously (TT , CC and WIB) TS performs
slightly better than HC. With regards to CPU times, MTP is the quickest method, whereas
TS is the slowest one.

To conclude this analysis, Table 7 compares TS with the previous alternative approaches,
namely STH, BIH and CTH.

As has already been stated for the slpr instances, TS usually gives worse TT values
than the previous approaches. Nevertheless, this increase is well compensated with better
imbalances and a smaller number of connected components. Thus, once again, it can be
stated that TS outperforms the previous approaches, as it produces solutions that are better
fitted for real life applications.
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Table 7: Comparing TS with previous approaches – seix instances
TT (sec) CC WIB(sec)

instance TS–CTH TS–STH TS–BIH TS–CTH TS–STH TS–BIH TS–CTH TS–STH TS–BIH

seix1 558 937 371 -2 -4 -4 -56 -195 -56
seix2 29 48 -250 -2 -4 -4 -171 -68 -171
seix3 60 59 -52 -2 -4 -4 -122 21 -122
seix4 497 306 399 -4 -2 -2 -431 -689 -431
seix5 69 66 -362 -3 -2 -2 -270 -304 -270
seix6 157 70 266 -3 -4 -4 -133 -234 -133
seix7 1060 1248 1548 -2 -2 -2 -753 -948 -753
seix8 -66 8 -399 -3 -3 -3 -319 -381 -319
seix9 1121 1042 1055 -4 -4 -4 -260 -138 -260

7. Conclusions

In this paper we propose a constructive heuristic and two local search heuristics for a
sectoring-arc routing problem. Using a real life application, namely the collection of urban
waste, the proposed methods were designed to provide solutions with reduced total routing
time but also that incorporate some required practical features, such as sectors that are both
balanced and connected.

Each of the proposed methods were evaluated for two sets of instances: benchmark
instances that were randomly generated according to real life applications, and instances
derived from real data. The constructive heuristic (MTP) proved to be very fast and was
generally able to provide solutions with the optimal number of connected components. Nev-
ertheless, it tends to produce solutions with high imbalance values, mainly for large-sized
instances.

The local search heuristics, one being a hill climbing approach (HC) and the other a
tabu search approach (TS), were devised to simultaneously handle the three optimisation
criteria. The computational results highlight the importance of considering all the criteria
for evaluating solutions during the search process: if only one criterion is considered, then
the quality of the solution increases for the criterion that is being considered, but decreases
in the majority of cases for the other two criteria.

From a more managerial perspective, combining MTP with TS yields significant practical
improvements. In fact, sectors are better balanced, with a lower number of connected
components, which in turn allows for the identification of sectors which are geographically
located in more delimited areas, which thus simplifies waste collection management.

The design of the sectors plays a crucial role when devising solutions for the problem being
handled. Therefore, one future research direction is to developed more tailored heuristics or
methaheuristics that iteratively alternate between the design of the sectors and the design
of the vehicle trips.
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