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Independence

V denotes a finite set (set of points)

The theories of matroids and Boolean representable simplicial
complexes (BRSCs) concern defining independence for a
subset of V ...

...when V is supplied with some additional structure (for
example, some geometry).

Classical example: V is a vector space over a finite field, with
the usual undergraduate definition of linear independence.

If H ⊆ 2V denotes the set of independent subsets of V , then
(V ,H) will consitute a (finite abstract) simplicial complex
since it satisfies the axiom

(SC) H 6= ∅ and X ⊆ Y ∈ H ⇒ X ∈ H.
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History

The very developed theory of matroids was started by

- H. Whitney, On the abstract properties of linear dependence,
American Journal of Mathematics 57(3) (1935), 509–533.

There exist many, many papers on matroids.

The new theory of BRSCs was created in 2008 by Zur
Izhakian and the author (three arXiv papers):

- Z. Izhakian and J. Rhodes, New representations of matroids
and generalizations, preprint, arXiv:1103.0503, 2011.

- Z. Izhakian and J. Rhodes, Boolean representations of
matroids and lattices, preprint, arXiv:1108.1473, 2011.

- Z. Izhakian and J. Rhodes, C-independence and c-rank of
posets and lattices, preprint, arXiv:1110.3553, 2011.
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History

The theory was developed and matured by Pedro Silva and
the author in

- J. Rhodes and P. V. Silva, Boolean Representations of
Simplicial Complexes and Matroids, Springer Monographs in
Mathematics, 2015.

Further contributions have been made by Stuart Margolis,
Silva and the author.
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The point replacement property

Both theories (matroids and BRSCs) satisfy the point
replacement property:

(PR) For all I , {p} ∈ H \ {∅}, there exists some i ∈ I such that
(I \ {i}) ∪ {p} ∈ H.

However, (PR) is too weak to get a satisfactory theory.

(V ,H) is a matroid iff it satisfies the exchange property:

(EP) For all I , J ∈ H with |I | = |J|+ 1, there exists some i ∈ I \ J
such that J ∪ {i} ∈ H.

For those who know a little matroid theory: (V ,H) is a
matroid iff (V ,H) and all its contractions satisfy (PR).
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BRSCs

We present five equivalent definitions of BRSC, five ways of
defining independence.

BRSCs satisfy axioms (SC) and (PR), and contain matroids
as a particular case.

John Rhodes Boolean representations of complexes



Definition 1 of BRSC

Let {Fi} ⊆ 2V be nonempty.

Let {Gj} be the closure of {Fi} under intersection (so each Gj

is of the form ∩i∈IFi ).

So {Gj} has a top element T = V = ∩i∈∅Fi and a bottom
element B (the intersection of all the Fi ).

X ⊆ V is independent iff there exists an enumeration x1, . . . , xn of
the elements of X and a chain

G0 ⊂ G1 ⊂ . . . ⊂ Gn

such that xj ∈ Gj \ Gj−1 for j = 1, . . . , n.
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Example

The simplicial complex (V ,H) with vertex set V = 1234 and
having 123, 124, 34 as bases (maximal independent sets) can be
depicted as

1

2

3 4

Note that (V ,H) is not pure (there are bases of different size) and
therefore is not a matroid.
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Example

(V ,H) :

1

2

3 4

Def.1: {Fi} = {1, 12, 3},
{Gj} = {V , 1, 12, 3, ∅}
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Definition 2 of BRSC

Let ρ : 2V → 2V be a closure operator on the lattice
(2V ,∪,∩):

- X ⊆ Y ⇒ Xρ ⊆ Y ρ,
- X ⊆ Xρ,
- Xρ2 = Xρ.

Write X = Xρ.

X ⊆ V is independent iff there exists an enumeration x1, . . . , xn of
the elements of X such that

∅ ⊂ x1 ⊂ x1x2 ⊂ . . . ⊂ x1 . . . xn.
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Example

(V ,H) :

1

2

3 4

Def.1: {Fi} = {1, 12, 3},
{Gj} = {V , 1, 12, 3, ∅}

Def.2: X = X if |X | ≤ 1,
12 = 12,
X = V for any other X ⊆ V
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Equivalence of 1 and 2

Given a closure operator, the closed sets X are closed under
intersection.

Every nonempty {Fi} ⊆ 2V induces a closure operator on 2V

by
X = ∩{Fi | X ⊆ Fi}.
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Two remarks

B = ∅ consists of those points which appear in no
independent set, and can therefore be omitted.

If p, q ∈ V are such that p = q, then pq is not independent
and so we can identify p with q.
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Definition 3 of BRSC

Let (L,V ) be a finite lattice sup-generated by V (i.e. each
element of L is a join of elements from V ).

Canonical example: (2V ,V ), with union as join.

X ⊆ V is independent iff there exists an enumeration x1, . . . , xn of
the elements of X such that

B < x1 < (x1 ∨ x2) < . . . < (x1 . . . xn).

If `↓= {p ∈ V | p ≤ `}, then this is equivalent to

xi ∈ (x1 ∨ . . . ∨ xi )↓ \(x1 ∨ . . . ∨ xi−1)↓

for i = 1, . . . , n.
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Example

(V ,H) :

1

2

3 4

1

Def.3:

2

3

4

B B ↓= ∅

1↓= 1

2↓= 12

3↓= 3

4↓= 1234

Def.1: {Fi} = {1, 12, 3},
{Gj} = {V , 1, 12, 3, ∅}

Def.2: X = X if |X | ≤ 1,
12 = 12,
X = V for any other X ⊆ V
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Equivalence of 2 and 3

Every sup-generated lattice defines a closure operator on
(2V ,∪,∩), namely X = (∨X )↓ .

If X 7→ X is a closure operator on (2V ,∪,∩), then its image is
a lattice with join (X ∨ Y ) = X ∪ Y and determined meet.

E. F. Moore could have (should have) made these deductions
in early 1900’s.
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Definition 4 of BRSC

Let M be an r × |V | Boolean matrix (entries in {0, 1}).

I ⊆ V = {columns of M} is independent if there exist k = |I | rows
r1, . . . , rk such that the square submatrix N = M[r1, . . . , rk ; I ]
yields a lower unitriangular matrix

Nπ =


1 0 0 . . . 0
? 1 0 . . . 0
? ? 1 . . . 0
...

...
...

. . .
...

? ? ? . . . 1


by (independently) permuting rows and columns of N.

If H is the set of independent subsets of V with respect to M,
we say that M is a Boolean representation of (V ,H).
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The super Boolean semiring

We need it to present definition 5 of a BRSC.

A tropical algebra amusing history: what is 1 + 1?

- 1 + 1 = 2 (Greek)
- 1 + 1 = 0 (Galois in fields of characteristic 2)
- 1 + 1 = 1 (Boole truth values with disjunction as sum)
- 1 + 1 = 1ν = 2 or more (super Boolean)
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The super Boolean semiring

Hence the tables for the (commutative) super Boolean semiring SB
are

+ 0 1 1ν

0 0 1 1ν

1 1 1ν 1ν

1ν 1ν 1ν 1ν

· 0 1 1ν

0 0 0 0
1 0 1 1ν

1ν 0 1ν 1ν
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The permanent in SB

It is a version of the determinant which omits the signs in
front of each term.

We compute the permanent per(M) of a square Boolean
matrix M by viewing 0, 1 as elements of SB.

It is not difficult to see that per(M) = 1 iff we can obtain a
lower unitriangular matrix by (independently) permuting rows
and columns of N.

Thus Definition 4 can be transformed to...
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Definition 5 of BRSC

(V ,H) is a BRSC iff there exists an r × |V | Boolean matrix such
that H is the set of all I ⊆ V such that M has a square submatrix
N = M[r1, . . . , rk ; I ] with per(N) = 1.
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Example

(V ,H) :

1

2

3 4

1

Def.3:

2

3

4

B B ↓= ∅

1↓= 1

2↓= 12

3↓= 3

4↓= 1234

Def.1: {Fi} = {1, 12, 3},
{Gj} = {V , 1, 12, 3, ∅} Def.4/5:

0 0 1 1
0 1 1 1
1 1 0 1


Def.2: X = X if |X | ≤ 1,
12 = 12,
X = V for any other X ⊆ V
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Remarks

The columns I = {~c1, . . . , ~ck} ⊆ {0, 1}n of a Boolean matrix
M are independent iff

λ1 ~c1 + . . .+ λk ~ck ∈ {0, 1ν}n ⇒ λ1 = . . . = λk = 0

for all λ1, . . . , λk ∈ {0, 1}.
Standard examples of matroids are obtained by replacing the
Boolean matrix M by a matrix N with coefficients over a field
(finite or infinite), and then saying that I of the columns are
independent iff they are independent in the usual vector space
sense.

This corresponds to Definition 5 with per(M) = 1 replaced by
det(N) 6= 0.

John Rhodes Boolean representations of complexes



Remarks

A defect of matroid theory is that not all matroids are field
representable (over any field).

BRSCs remedy this: all matroids will have Boolean
representations (proof: use Definition 3 with (L,V ) being the
geometric lattice of the matroid).

Slightly roughly speaking, BRSCs are matroids iff all orderings
of I ⊆ V satisfy the conditions of Definitions 1–4.
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Important remark

Why are Definitions 1 and 4 equivalent?

Roughly, given an m × |V | Boolean matrix M, consider each
row r of M and let Fr be the set of columns where r is 0.

Then M ↔ {Fr | r is a row of M} relates Definitions 4 and 1.
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Examples: posets

Let (P,≤) be a finite poset.

For every p ∈ P, let p↓= {q ∈ P | q ≤ p}.
Taking {Fi} = {p↓ | p ∈ P} in Definition 1 of BRSC, we
define independent sets of points for arbitrary posets.
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Examples: algebras

Let A be an algebraic structure.

Let the Gj in Definition 1 be the subalgebras of A.

Equivalently, using Definition 2 we define a closure operator
by letting X be the subalgebra of A generated by X ⊆ A.

Detailed examples in

- P.J. Cameron, M. Gadouleau, J.D. Mitchell and Y. Peresse,
Chains of subsemigroups, preprint, arXiv:1501.06394, 2015.

Similarly: predicate logic structures and subgeometries.
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Examples: basis in finite permutation groups

Let G be a permutation group on the finite set V .

Define a Galois connection

f : (2V ,∪)→ (2G ,∩) g : (2G ,∩)→ (2V ,∪)
Z 7→ stabilizer of Z D 7→ fixed points of D

Then fg : 2V → 2V is a closure operator.

The bases of G (in the sense of Cameron) are the
independent sets of the BRSC defined by fg .
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Flats

Let (V ,H) be a simplicial complex.

Then F ⊆ V is a flat if

for all I ∈ H, I ⊆ F , p ∈ V \ F , we have I ∪ {p} ∈ H.

We denote by Fl(V ,H) the set of flats of (V ,H).
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Flats and BRSCs

Fl(V ,H) is closed under intersection, so using Definition 1 we have

Proposition

Let (V ,H) be a simplicial complex. The independent sets with
respect to Fl(V ,H) are contained in H, and the converse holds iff
(V ,H) is a BRSC.
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Comparing representations (new idea for matroids)

Let (V ,H) be a BRSC (for instance, a matroid).

Let M(Fl(V ,H)) be the |Fl(V ,H)| × |V | Boolean matrix
where the 0’s in each row correspond to a flat.

Then M(Fl(V ,H)) is the largest Boolean representation of
(V ,H) (all others have less rows).
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Comparing representations

In general, there exist many other Boolean representations.

In fact, the set of all Boolean representations of (V ,H)
constitutes a lattice (with a bottom added).

So let us find the minimal ones (atoms of the lattice) and the
minimal number of rows (mindeg).
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Comparing representations

We will present a minimal representation of the Fano plane
soon.

If (V ,H) is a graphic matroid, then the usual representation
over Z2 is also a Boolean representation.
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BRSCs and matroids are geometric objects

A PEG (partial Euclidean geometry) is a finite set of points V
and L ⊆ 2V such that:

- if L ∈ L, then |L| ≥ 2;
- if L, L′ ∈ L are distinct, then |L ∩ L′| ≤ 1.
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Example: the Fano plane

1

2 3

4 5

6

7

L = {124, 135, 167, 236, 257, 347, 456}

The Fano plane is the matroid defined by taking {Fi} = L in
Definition 1 of BRSC.
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Fano plane: the lattice of flats

V

∅

1 2 3 4 5 6 7

124 135 167 236 257 347 456

This provides a Boolean representation with 7 rows corresponding
to the 7 lines.
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Fano plane: a minimal representation

V

∅

2 3 4 5 6 7

236 257 347 456

A Boolean representation of minimum degree is
1 0 0 1 1 0 1
1 0 1 1 0 1 0
1 1 0 0 1 1 0
1 1 1 0 0 0 1


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From PEGs to BRSCs

Given a PEG on V with lines L, we say that L ⊆ V is a potential
line if |L| ≥ 3 and L ∪ {L} is still a PEG.
We can consider two simplicial complexes with vertex set V
associated to our PEG:

(1) All subsets of V with ≤ 3 points except those 3-sets
contained in some line of L (this is a matroid).

(2) All subsets of V with ≤ 3 points except those 3-sets
contained in some line or potential line of L (this is a BRSC
contained in the previous matroid).
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FPEGs

Now we are heading toward the great Wilson paper on
combinatorics and design theory:

- R.M. Wilson, An existence theory for pairwise balanced
designs, I. Composition theorems and morphisms, J.
Combinatorial Theory 13 (A) (1972), 220–245.

We say a PEG is full (FPEG) if each pair of vertices
determines a (unique) line.

We can always embed a non full PEG into a FPEG by adding
two-point lines:
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PBDs

Let (V ,L) be a FPEG and let
K = {|L| : L ∈ L} ⊂ {2, 3, 4, . . .}.
In design theory, this FPEG is a PBD(|V |,K , 1), where

- PBD stands for piecewise balanced design;
- 1 means that every pair of vertices belongs to exactly 1 line, so

distinct lines intersect in at most one point.

A PBD(v , {k}, 1) is also called a BIBD(v , k, 1) (balanced
incomplete block design).

The Fano plane is a BIBD(7, 3, 1).
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TBRSCs

A truncation of (V ,H) is obtained by omitting all
independent sets above a certain size (rank).

Now BRSCs are not closed under truncation (in fact, every
simplicial complex is the one-point contraction of some
BRSC).

But this is no problem because we can introduce the concept
of TBRSCs (truncated BRSCs).

A simplicial complex (V ,H) of rank r (maximum size of an
independent set) is a TBRSC if there exists an m × |V |
Boolean matrix M such that the independent sets of M of
rank ≤ r are the elements of H (but there may be
independent sets of M of rank > r).
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TBRSCs

The theory of TBRSCs is easily developed by replacing
Fl(V ,H) by TFl(V ,H).

We write F ∈ TFl(V ,H) if

for all I ∈ H, I ⊆ F , |I | < rk(V ,H), p ∈ V \ F ,
we have I ∪ {p} ∈ H.

The theories of BRSCs and TBRSCs are similar.
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The new main idea

Consider a PBD(v ,K , 1) (to make it more interesting, say
2 /∈ K ).

Let (V ,H) be the simple matroid (1) associated to this PBD
(by omitting the 3-sets contained in some line).

We say that Z ⊆ V is a subgeometry of the matroid (V ,H)
if, for every pair of vertices in Z , the line determined by these
vertices is also contained in Z (Wilson calls the subgeometries
closed).
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The new main idea

But these subgeometries are precisely the elements of
TFl(V ,H).

Thus going via Definition 1 of BRSC for the subgeometries
(they form a collection of subsets closed under all
intersections), they give by Definition 4 of BRSC a Boolean
matrix M which yields the matroid when we truncate to rank
3.

In general the subgeometries only define a BRSC, not a
matroid.

In this way we push the matroid into higher dimensions (the
dimension being the length of the longest chain of
subgeometries of the matroid).
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