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Plan of the talk

1. Overview of frames and locales and of commutative dualities.

2. Ehresmann quantal frames and quantal localic categories.

3. Restriction quantal frames, complete restriction monoids and
étale localic categories.

4. Topological dualities.

GK, M. V. Lawson, A perspective on non-commutative frame
theory, arXiv:1404.6516.



Frames and locales



Frames

Pointless topology studies lattices with properties similar to the
properties of lattices of open sets of topological spaces.

Pointless topology studies lattices L which are

I sup-lattices: for any xi ∈ L, i ∈ I , their join
∨

xi exists in L.

I infinitely distributive: for any xi ∈ L, i ∈ I , and y ∈ L

y ∧ (∨i∈I xi ) = ∨i∈I (y ∧ xi ).

I Such lattices are called frames.

I A frame morphism ϕ : F1 → F2 is required to preserve finite
meets and arbitrary joins.



Locales

The category of locales is defined to be the opposite category to
the category of frames. Locales are ‘pointless topological spaces’.

Notation
If L is a locale then O(L) is the frame of opens of L.

A locale morphism ϕ : L1 → L2 is defined as the frame morphism
ϕ∗ : O(L2)→ O(L1).



Frames vs locales

O(L)
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The adjunction

If L is a locale then points of L are defined as frame morphisms
L→ {0, 1}. Topology on pt(L) is the subspace topology inherited
from the product space {0, 1}L.
This gives rise to the spectrum functor

pt : Loc→ Top.

Assigning to a topological space its frame of opens leads to the
functor

Ω : Top→ Loc.

Theorem
The functor pt is the right adjoint to the functor Ω.

Is this adjunction an equivalence?
No!



Spatial frames and sober spaces

I A space X is sober if pt(Ω(X )) ' X .

I A locale F is spatial if Ω(pt(F )) ' F .

Theorem
The above adjunction restricts to an equivalence between the
categories of spatial locales and sober spaces.

Example of a non-sober space:

{1, 2} with indiscrete topology.

Example of non-spatial frame:

A complete non-atomic Boolean algebra, for example the Boolean
algebra of Lebesgue measurable subsets of R modulo the ideal of
sets of measure 0.



Pointset vs pointless topology
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Coherent frames and distributive lattices
A space X is called spectral if it is sober and compact-open sets
form a basis of the topology closed under finite intersections. A
frame is called coherent if it is isomorphic to a frame of ideals of a
distributive lattice.

Theorem
The following categories are pairwise equivalent:

I The category of distributive lattices

I The category of coherent frames

I The opposite of the category of spectral spaces

Theorem: bounded version
The following categories are pairwise equivalent:

I The category of bounded distributive lattices

I The category of coherent frames where 1 is a finite element

I The opposite of the category of compact spectral spaces



Coherent frames and distributive lattices

Coherent frames

Distributive lattices

Spectral spacesStone-type duality



Stone duality for Boolean algebras

I A locally compact Boolean space is a Hausdorff spectral space.

I A generalized Boolean algebra is a relatively complemented
distributive lattice with bottom element.

Stone duality for generalized Boolean algebras

I The category of generalized Boolean algebras is dual to the
category of locally compact Boolean spaces.

I The category of Boolean algebras is dual to the category of
Boolean spaces.



Ehresmann quantal frames and
quantal localic categories



Quantales and quantal frames

A quantale (Q,≤, ·) is a sup-lattice (Q,≤) equipped with a binary
multiplication operation · such that multiplication distributes over
arbitrary suprema:

a(∨i∈Ibi ) = ∨i∈I (abi ) and (∨i∈Ibi )a = ∨i∈I (bia).

A quantale is unital if there is a multiplicative unit e and
involutive, if there is an involution ∗ on Q which is a sup-lattice
endomorphism.

A quantal frame is a quantale which is also a frame.



Ehresmann quantal frames

A unital quantale Q with unit e is called an Ehresmann quantale if
there are two maps λ, ρ : Q → Q such that

(E1) both λ and ρ are sup-lattice endomorphisms;

(E2) if a ≤ e then λ(a) = ρ(a) = a;

(E3) a = ρ(a)a and a = aλ(a) for all a ∈ Q;

(E4) λ(ab) = λ(λ(a)b), ρ(ab) = ρ(aρ(b)) for all a, b ∈ Q.

Under multiplications, they are Ehresmann semigroups, introduced
and first studied by Mark Lawson in 1991.

Another notation: λ(a) = a∗, ρ(a) = a+.
An Ehresmann quantal frame is an Ehresmann quantale that is a
also a frame.



Example

I X – non-empty set

I A ⊆ X × X – a transitive and reflexive relation

I P(A) – the powerset of A

I e – the identity relation

For a ∈ P(A) we define

a∗ = {(x , x) ∈ X × X : ∃y ∈ X such that (y , x) ∈ a} ∈ e↓,

a+ = {(y , y) ∈ X × X : ∃x ∈ X such that (y , x) ∈ a} ∈ e↓.

P(A) is an Ehresmann quantal frame which generalizes the frame
e↓ ' P(X ).



Localic categories
A localic category is an internal category in the category of locales.

That is, we are given the data

C = (C1,C0, u, d , r ,m), or C = (C1,C0), for short,

where C1 is a locale, called the locale of arrows, and C0 is a locale,
called the locale of objects, together with four locale maps

u : C0 → C1, d , r : C1 → C0, m : C1 ×C0 C1 → C1,

called unit, domain, codomain, and multiplication, respectively.
C1 ×C0 C1 is the object of composable pairs defined by the
pullback diagram

C1 C0

C1 ×C0 C1 C1

d

π2

π1 r



Localic and topological categories

The four maps u, d , r ,m are subject to conditions that express the
usual axioms of a category:

1. du = ru = id .

2. m(u × id) = π2 and m(id × u) = π1.

3. rπ1 = rm and dπ2 = dm.

4. m(id ×m) = m(m × id).

Topological categories are defined similarly, as internal categories in
the category of topological spaces. If C = (C1,C0) is a topological
category then the space of composable pairs C1 ×C0 C1 equals

{(a, b) ∈ C1 × C1 : d(a) = r(b)}.



Ehresman quantal frames vs étale localic categories:
dictionary

Commutative setting
Frame Locale

O(L) L

Non-commutative setting

Quantal frame Q Étale localic category C = (C1,C0)

Q = O(C1) locale C1

e↓ = O(C0) locale C0

quantale multiplication of Q category multiplication of C

∗,+: Q → e↓ domain and range maps d and r of C

Ehresmann multiplicative:
quantal: properties of d and r

properties of ·, ∗ and +

restriction:
étale: properties of d and rproperties of ∗ and +

partial isometries generate Q



Adjoint pairs of maps

F1,F2 - frames, f : F1 → F2, g : F2 → F1.
f is a left adjoint of g and g a right adjoint of f if

f (x) ≤ y iff x ≤ g(y).

Limit = meet, colimit = join.

RAPL = right adjoints preserve (arbitrary) limits = right adjoints
preserve arbitrary joins. So if f preserves arbitrary joins, it is a
right adjoint, that is, it has a left adjoint. A similar remark holds
for ”left adjoints preserve colimits”.



Maps between locales

A locale map f : L→ M is called semiopen if the defining frame
map f ∗ : O(M)→ O(L) preserves arbitrary meets. Then the left
adjoint

f! : O(L)→ O(M)

to f ∗ is called the direct image map of f .

f is called open if the Frobenius condition holds:

f!(a ∧ f ∗(b)) = f!(a) ∧ b

for all a ∈ O(L) and b ∈ O(M).

Example: if f : X → Y is an open continuous map between
topological spaces then it is open as a locale map.



The correspondence theorem

An an Ehresmann quantal frame Q is multiplicative if the right
adjoint m∗ of the multiplication map

Q ⊗e↓ Q → Q

preserves arbitrary joins and thus the multiplication map is a direct
image map of a locale map.

An étale localic category C = (C1,C0, u, d , r ,m) is quantal if the
maps u, d , r are open and m is semiopen (that is, m! exists and m
can be ‘globalized’.).

Correspondence Theorem

There is a bijective correspondence between multiplicative
Ehresmann quantal frames and quantal localic categories.



Morphisms

A morphism ϕ : Q1 → Q2 between Ehresmann quantal frames is a
quantale map that is also a map of Ehresmann monoids (preserves
both ∗ and +).
We consider the following four types of morphisms between
Ehresmann quantal quantal frames:

I type 1: morphisms;

I type 2: proper morphisms (unital morphism);

I type 3: ∧-morphisms (preserves non-empty finite meets);

I type 4: proper ∧-morphisms (preserves all finite meets).

In the multiplicative case, morphisms between respective quantal
localic categories are defined as the above morphisms but going in
the opposite direction. Thus the correspondence theorem becomes
a categorical duality.



Restriction quantal frames,
complete restriction monoids and

étale localic categories



Partial isometries

I Q – an Ehresmann quantal frame

I a ∈ Q

I a is a partial isometry if b ≤ a implies that b = af = ga for
some f , g ≤ e

I Notation: PI(Q)

Example

X a non-empty set, A ⊆ X × X a transitive and reflexive relation.
The partial isometries of the Ehresmann quantal frame P(A) are
precisely partial bijections.



Étale correspondence theorem

A localic category C = (C1,C0) is étale if u,m are open and d , r
are local homeomorphisms.

An Ehresmann quantal frame Q is a restriction quantal frame if
every element is a join of partial isometries and partial isometries
are closed under multiplication.

Theorem
The Correspondence Theorem restricts to the duality between
restriction quantal frames and étale localic categories.

Remark: morphisms are required to preserve partial isometries!
This extends and is inspired by the correspondence between inverse
quantal frames and étale localic groupoids due to Pedro Resende.



Down to partial isometries

Partial isometries = ?

Restriction quantal frames

Étale localic categories



Complete restriction monoids

Restriction semigroups form a subclass of Ehresmann semigroups.
They satisfy:

a∗b = b(ab)∗, ba+ = (ba)+b for all a, b ∈ S .

Remark. Any inverse semigroup is a restriction semigroup if one
defines a∗ = a−1a and a+ = aa−1.

I a, b ∈ S are compatible if aλ(b) = bλ(a) and ρ(a)b = ρ(b)a.

I S is complete if E is a complete lattice and joins of
compatible families of elements exist in S .



Equivalence with restriction quantal frames

Morphisms between complete restriction monoids

S , T – complete restriction monoids, ϕ : S → T is a morphism if

I ϕ is a homomorphism of restriction monoids and

I restricted to ES , is a frame morphism from ES to ET .

Theorem
The category of complete restriction monoids is equivalent to the
category of restriction quantal frames.

This extends an equivalence between pseudogroups and inverse
quantal frames established by Pedro Resende.



The equivalences

Complete restriction monoids

Restriction quantal frames

Étale localic categories



An example

Let X be a set and

I X × X be the pair groupoid of X .

I I(X ) be the symmetric inverse monoid on X .

I P(X × X ) the powerset quantale of X × X .

An observation
Either of these structures allows to recover any of the other two.

Remark
This example can be generalized if instead of X × X one starts
from a reflexive and transitive relation A ⊆ X × X .



Topological dualities



The adjunction

Theorem
There is an adjunction between:

I the category of étale localic categories and

I the category of étale topological categories.

This adjunction is given by the spectrum and open set functors
and extends the classical adjunction between locales and
topological spaces.

Corollary

There is a dual adjunction between:

I the category restriction quantal frames and

I the category of étale topological categories.

This adjunction extends the classical dual adjunction between
frames and topological spaces.



Sober and spatial categories

I Let C = (C1,C0) be an étale localic category. Then the locale
C1 is spatial iff the locale C0 is spatial. If these hold C is
called spatial.

I Let C = (C1,C0) be an étale topological category. Then the
space C1 is sober iff the space C0 is sober. If these hold C is
called sober.

Corollary

The category of spatial étale localic categories is equivalent to the
category of sober étale topological categories.



Morphisms
Let C = (C1,C0) and D = (D1,D0) be étale topological
categories. A relational covering morphism C → D is f = (f1, f0),
where f0 : C0 → D0 is a continuous map, f1 : C1 → P(D1) is a
function and:

(RM1) If b ∈ f1(a) where a ∈ C1 then d(b) = f0d(a) and
r(b) = f0r(a).

(RM2) If (a, b) ∈ C1 ×C0 C1 and (c , d) ∈ D1 ×D0 D1 are such that
c ∈ f1(a) and d ∈ f1(b) then cd ∈ f1(ab).

(RM3) If d(a) = d(b) (or r(a) = r(b)) where a, b ∈ C1 and
f1(a) ∩ f1(b) 6= ∅ then a = b.

(RM4) If p = f0(q) and d(s) = p (resp. r(s) = p) where q ∈ C0

and s ∈ D1 then there is t ∈ C1 such that d(t) = q (resp.
r(t) = q) and s ∈ f1(t).

(RM5) For any A ∈ O(D1):
f −11 (A) = {x ∈ C1 : f1(x) ∩ A 6= ∅} ∈ O(C1).

(RM6) uf0(t) ∈ f1u(t) for any t ∈ C0.



Types of morphisms between étale topological categories:

I Type 1: relational covering morphisms.

I Type 2: at least single-valued relational covering morphisms.

I Type 3: at most single-valued relational covering morphisms.

I Type 4: single-valued relational covering morphisms, or,
equivalently, continuous covering functors.



Summary of topological dualities

RS = restriction semigroups

Algebraic object Topological étale category C = (C1,C0)

Distributive RS C0 – spectral

Distributive ∧ RS C1 (and thus also C0) spectral

Boolean RS C0 – Boolean

Boolean ∧ RS C1 (and thus also C0) Boolean

Remark. Restriction semigroup → inverse semigroup,
category → groupoid.
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