Regular actions of groups and inverse semigroups on combinatorial structures

Tatiana Jajcayová

Comenius University, Bratislava

CSA 2016, Lisbon
August 1, 2016

(joint work with Robert Jajcay)
Definition

- A **combinatorial structure** \((V, \mathcal{F})\) consists of a (finite) non-empty set \(V\) and a family \(\mathcal{F}\) of subsets of \(V\), \(\mathcal{F} \subseteq \mathcal{P}(V)\). Examples include graphs, hypergraphs, geometries, designs, ...

- An **automorphism** of \((V, \mathcal{F})\) is a permutation \(\varphi \in \text{Sym}(V)\) satisfying the property \(\varphi(B) \in \mathcal{F}\), for all \(B \in \mathcal{F}\).
Given a class of combinatorial structures, classify finite groups G with the property that there exists a structure from the considered class whose full automorphism group is isomorphic to G.
Automorphism Groups of Graphs

Theorem (Frucht 1939)

For any finite group G there exists a graph Γ such that $\text{Aut}(\Gamma) \cong G$.

Proof.

- construct any $LC(G, X)$, $X = \{x_1, x_2, \ldots, x_k\}$
- find a family X_1, X_2, \ldots, X_k of mutually non-isomorphic graphs that have no automorphisms (have a trivial automorphism group)
- replace each edge labeled x_i by the graph X_i, $1 \leq i \leq k$
Automorphism Groups of Graphs

Theorem (Frucht 1939)

For any finite group G there exists a graph Γ such that $\text{Aut}(\Gamma) \cong G$.

Note: We do not specify the type of action required.
Regular Group Actions

Definition
Let G be a group acting on a set V.

- The action of G on V is said to be **transitive** if for any pair of elements $u, v \in V$ there exists an element $g \in G$ such that $u^g = v$.

- The action of G on V is said to be **regular** if for any pair of elements $u, v \in V$ there exists exactly one element $g \in G$ such that $u^g = v$.
Equivalently, an action of G on V is regular if

1. G acts transitively on V and $\text{Stab}_G(v) = 1_G$, for all $v \in V$
2. G acts transitively on V and $|G| = |V|$
Theorem

Every group G acts regularly on itself via (left) multiplications, i.e., G is isomorphic to the group $G_L = \{\sigma_g \mid g \in G\}$ of (left) translations:

$$\sigma_g(h) = g \cdot h, \quad \text{for all } h \in G$$

Note:

- The action of G_L on G is regular.
- Every regular action of G on a set V can be viewed as the action of G_L on G.
Given a (finite) group G, find a combinatorial structure (G, \mathcal{B}) on G such that $\text{Aut}(G, \mathcal{B}) = G_L$.
Given a (finite) group G, find a combinatorial structure (G, \mathcal{B}) on G such that $\text{Aut}(G, \mathcal{B}) = G_L$.

- we require an equality $\text{Aut}(G, \mathcal{B}) = G_L$
Definition
Let $\Gamma = C(G, X)$. If $\text{Aut}(\Gamma) \cong G$, then Γ is a **Graphical Regular Representation** (GRR) for G.
Given a group G, and a generating set $X = \{x_1, x_2, \ldots, x_d\}$, $\langle X \rangle = G$, that is closed under taking inverses and does not contain 1_G, the vertices of the Cayley graph $C(G, X)$ are the elements of the group G, and each vertex $g \in G$ is connected to all the vertices gx_1, gx_2, \ldots, gx_d.
Why Cayley Graphs?

For any $g \in G$, **left-multiplication** by g is a graph automorphism of $C(G, X)$:

$$\{a, ax\} \rightarrow \{ga, gax\}$$

for all $a \in G$ and $x \in X$.

\implies

$$G \leq Aut(G, X)$$

Theorem (Sabidussi)

*Let Γ be a graph. Then $Aut(\Gamma)$ contains a regular group G if and only if Γ is a Cayley graph $C(G, X)$.***

\implies GRR’s must be Cayley graphs
Theorem (Watkins, Imrich, Godsil, ...)

Let \(G \) *be a finite group that does not have a GRR, i.e., a finite group that does not admit a regular representation as the full automorphism group of a graph. Then* \(G \) *is an abelian group of exponent greater than 2 or* \(G \) *is a generalized dicyclic group or* \(G \) *is isomorphic to one of the 13 groups :* \(\mathbb{Z}_2^2, \mathbb{Z}_2^3, \mathbb{Z}_2^4, D_3, D_4, D_5, A_4, Q \times \mathbb{Z}_3, Q \times \mathbb{Z}_4, \)

\[
\langle a, b, c \mid a^2 = b^2 = c^2 = 1, \ abc = bca = cab \rangle,
\]

\[
\langle a, b \mid a^8 = b^2 = 1, \ b^{-1}ab = a^5 \rangle,
\]

\[
\langle a, b, c \mid a^3 = b^3 = c^2 = 1, \ ab = ba, (ac)^2 = (bc)^2 = 1 \rangle,
\]

\[
\langle a, b, c \mid a^3 = b^3 = c^3 = 1, \ ac = ca, bc = cb, b^{-1}ab = ac \rangle.
\]

Proof.

About 12 papers, some of it still unpublished.

Theorem (Babai 1980)

*The finite group G admits a DRR $\overline{C}(G, X)$ if and only if G is neither the quaternion group Q_8 nor any of \mathbb{Z}_2^2, \mathbb{Z}_2^3, \mathbb{Z}_2^4, \mathbb{Z}_3^2.***
Lemma

Let $\mathcal{I} = (V, \mathcal{B})$ be a vertex transitive incidence structure. Then \mathcal{I} admits a regular subgroup G of the full automorphism group $\text{Aut}(\mathcal{I})$ if and only if there exists a family of sets $B_r \in \mathcal{P}(G)$, $1 \leq r \leq k$, each of which contains 1_G, such that \mathcal{I} is isomorphic to $(G, \bigcup_{r=1}^k B_r^G)$.
Theorem

A finite group G can be represented as a regular full automorphism group of some hypergraph if and only if G is not one of the groups $\mathbb{Z}_3, \mathbb{Z}_4, \mathbb{Z}_5$ or \mathbb{Z}_2^2.

The proof

- takes advantage of results concerning digraphs
- uses blocks of different sizes
- uses complements
Definition

- a pair $\mathcal{H} = (V, \mathcal{B})$, $\mathcal{B} \subseteq \mathcal{P}_k(V)$ (i.e., all the blocks are of size k), is a k-uniform hypergraph or simply a k-hypergraph
- the “usual” graph is a 2-hypergraph
Theorem

A cyclic group \mathbb{Z}_n can be regularly represented on a 3-hypergraph if and only if $n \neq 3, 4, 5$.

Proof.

The proof mimics the DRR:

- construct $C(\mathbb{Z}_n, \{1, -1\})$; an n-cycle
- orient all the edges the same direction (say counterclockwise)
- $\text{Aut}(\overline{C}(\mathbb{Z}_n, \{1, -1\})) = \mathbb{Z}_n$
- $\mathcal{B} = \{ \{i, i+1, i+2\} \mid 0 \leq i \leq n-1 \} \cup \{ \{i, i+1, i+3\} \mid 0 \leq i \leq n-1 \}$
- $\text{Aut}(\overline{C}(\mathbb{Z}_n, \{1, -1\})) = \text{Aut}(\mathbb{Z}_n, \mathcal{B})$

Note that cyclic groups do not admit graphical regular representation.
Problem
Classify finite groups G that admit a regular representation as the full automorphism group of some k-hypergraph.

Problem
For each finite group G, find all the positive integers k such that G admits a regular representation as the full automorphism group of a k-hypergraph.
Theorem

Let $n > 5$. Then, for every k, $3 \leq k \leq n - 3$, there exists a k-hypergraph $\mathcal{H}_{n,k} = (\mathbb{Z}_n, \mathcal{B})$ such that

$$\text{Aut}(\mathcal{H}_{n,k}) = \mathbb{Z}_n$$

Proof.

$\mathcal{B} = \{ \{i, i + 1, i + 2, \ldots, i + k\} \mid 0 \leq i \leq n - 1 \}$

$\cup \{ \{i, i + 1, i + 2, \ldots, i + (k - 1), i + (k + 1)\} \mid 0 \leq i \leq n - 1 \}$ \square
Theorem
Let $\Gamma = C(G, X)$ be a Cayley graph of G of degree $k = |X|$. If Γ admits a set \mathcal{O} of $2k$ vertices non-adjacent to 1_G with the property that each vertex $g \in \mathcal{O}$ belongs to a different orbit of $\text{Stab}(1_G)$, then G admits a regular representation through a 3-hypergraph.

Corollary
Let $\Gamma = C(G, X)$ be a Cayley graph of G of degree $k = |X|$. If $\text{diam}(\Gamma) > 2k$, then G admits a regular representation through a 3-hypergraph.

Corollary
Let $r \geq 2$. All but finitely many finite groups of rank r admit regular representation through a 3-hypergraph.
Lemma
Let $\Gamma = C(G, X)$ be a Cayley graph of valency $|X| > k - 1$ and girth $g > 2k - 2$, $k \geq 2$. Then $\text{Aut}(C(G, X)) = \text{Aut}(G, \mathcal{B})$, where

$$\mathcal{B} = \{ \{g, gx, gxy\} | g \in G, x, y \in X \}$$

Corollary
If $\Gamma = C(G, X)$ is a GRR for G of valency $|X| > k - 1$ and girth $g > 2k - 2$, $k \geq 2$, then G admits a regular representation through a 3-hypergraph.
An Almost Theorem
A finite group G can be represented as a regular full automorphism group of a 3-hypergraph if and only if G is not one of the groups $\mathbb{Z}_3, \mathbb{Z}_4, \mathbb{Z}_5$ or \mathbb{Z}_2^2.

A Conjecture
Every finite group G that has a GRR can be represented as a regular full automorphism group of some k-hypergraph for all $2 \leq k \leq |G| - 2$.

Every finite group G that can be represented as a regular full automorphism group of a 3-hypergraph can be represented as the regular full automorphism group of some k-hypergraph for all $3 \leq k \leq |G| - 3$.
Definition

- Let \((V, \mathcal{F})\) be a combinatorial structure and \(U\) be a subset of \(V\). The block system \(\mathcal{F}'\) of the substructure induced by \(U\), \((U, \mathcal{F}')\), is the system of all blocks \(F \in \mathcal{F}\) that are subsets of \(U\).

- A partial automorphism of a combinatorial structure \((V, \mathcal{F})\) is an isomorphism between two induced substructures of \((V, \mathcal{F})\), i.e., a partial bijection between two subsets \(U, W \subseteq V\) that maps the induced blocks in \(U\) onto the induced blocks of \(W\).

- The set of all partial automorphisms of \((V, \mathcal{F})\) together with the operation of partial composition forms an inverse semigroup; a sub-semigroup of the symmetric inverse sub-semigroup of all partial bijections from \(V\) to \(V\).
Theorem (Wagner-Preston)

Every finite inverse semigroup is isomorphic to an inverse sub-semigroup of the symmetric inverse semigroup of all partial bijections of some finite set V.

Analogue of Cayley’s theorem for groups.
Open Problems

1. Classify finite inverse semigroups that are *isomorphic* to inverse semigroups of partial automorphisms of combinatorial structures from some interesting class; graphs, hypergraphs, general combinatorial structures, ...

 Analogue of Frucht’s theorem for groups.

2. For a specific class of representations of finite inverse semigroups classify finite inverse semigroups that admit a combinatorial structure for which the inverse semigroup of partial automorphisms is *equal to* the partial bijections from the representation.

 Analogue of GRR’s for groups.
Theorem (Sieben, 2008)

*The inverse semigroup of partial automorphisms of the** Cayley color graph **of an inverse semigroup is isomorphic to the original inverse semigroup.*

Note: The inverse semigroup of partial automorphisms of a graph $\Gamma = (V, E)$ with more than one vertex is never trivial: any involution swapping two adjacent or two non-adjacent vertices is a partial automorphism of Γ.

\[u \leftrightarrow v \quad \text{and} \quad u \leftrightarrow v \]
Definition
Let \(\Gamma = (V, E) \) be a finite graph and \(D \) be the deck of \(\Gamma \): \(D \) is the multiset of all induced subgraphs \(\Gamma - \{u\}, \ u \in V \).

Graph reconstruction conjecture (Kelly and Ulam, 1957)

Every finite graph on at least 3 vertices is uniquely reconstructible from its deck.

i.e., any two finite graphs that have the same decks are isomorphic.
Observation:

- For any two \(u, v \in V \), the subgraphs \(\Gamma - \{u\} \) and \(\Gamma - \{v\} \) contain the subgraph \(\Gamma - \{u, v\} \).

- If the decks of \(\Gamma - \{u\} \) and \(\Gamma - \{v\} \) overlap in a single graph, then \(\Gamma \) is reconstructible.

- If \(\Gamma \) contains a subgraph \(\Gamma - \{u, v\} \) that is not isomorphic to any other subgraph \(\Gamma - \{u', v'\} \), then \(\Gamma \) is reconstructible.

i.e., if \(\Gamma \) contains a subgraph \(\Gamma - \{u, v\} \) for which there is no partial automorphism mapping \(\Gamma - \{u, v\} \) to some \(\Gamma - \{u', v'\} \), then \(\Gamma \) is reconstructible.
Definition
Let $\Gamma = (V, E)$ be a finite graph. Two vertices $u, v \in V$ are **pseudo-similar** if $\Gamma - \{u\}$ and $\Gamma - \{v\}$ are isomorphic, but there exists no automorphism of Γ that would map u to v.
i.e., two vertices u and v are pseudo-similar if there exists a partial automorphism from $\Gamma - \{u\}$ and $\Gamma - \{v\}$ mapping u to v which cannot be extended into an automorphism of the whole graph.

Note: If pseudo-similar vertices did not exist, the Graph reconstruction conjecture could be easily proved.

Open problem: What is the maximal number of mutually pseudo-similar vertices in a graph of order n?
Definition
A k-regular graph Γ of girth g is called a (k, g)-cage if Γ is of smallest possible order among all k-regular graphs of girth g.

Open problem: Does there exist a $(57, 5)$-graph of order 3250?

We do know that if the graph exists, it is not vertex-transitive, but for any two vertices u, v of such graph, there would exist a partial automorphism mapping u to v whose domain would constitute a significant part of the graph.

Most people believe the graph does not exist.
Thank you!
Všetko najlepšie, Gracinda and Jorge!