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The importance of conferences

I July 2011: Groups and Semigroups: Interactions and
Computations, Lisbon.

Efim Zelmanov asked: Can finite state automata be used to compute
efficiently with Plactic monoids?

This led A. J. Cain, A. Malheiro and me to get interested in Plactic
monoids and algebras.

I June 2013: Geometric, Combinatorial & Dynamics Aspects of
Semigroups and Groups, On the occasion of the 60th birthday of
Stuart Margolis Bar-Ilan, Israel.

Anne Schilling pointed out connections with crystal basis theory (in
the sense of Kashiwara (1990)).
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Plactic monoid

Let An be the finite ordered alphabet {1 < 2 < . . . < n}.

I want to give three different ways of defining a certain equivalence
relation ∼ on the free monoid A∗n of all words:

1. Presentation (Knuth relations)

2. Tableaux (Schensted insertion algorithm)

3. Crystal bases (in the sense of Kashiwara)

We call ∼ the Plactic congruence and the resulting quotient monoid
Pl(An) = A∗n/ ∼ is called the Plactic monoid (of rank n).



The Plactic monoid
I Has origins in work of Schensted (1961) and Knuth (1970)

concerned with combinatorial problems on Young tableaux.
I Later studied in depth by Lascoux and Shützenberger (1981).

Due to close relations to Young tableaux, has become a tool in several
aspects of representation theory and algebraic combinatorics.

Applications of the Plactic monoid

I proof of Littlewood–Richardson rule for Schur functions (an
important result in the theory of symmetric functions)

I appendix of J. A. Green’s “Polynomial representations of GLn”.

I combinatorial description of Kostka–Foulkes polynomials, which
arise as entries of the character table of the finite linear groups.

M. P. Schützenberger ‘Pour le monoïde plaxique’ (1997)
Argues that the Plactic monoid ought to be considered as “one of the
most fundamental monoids in algebra”.



Plactic monoid via Knuth relations

Definition
Let An be the finite ordered alphabet {1 < 2 < . . . < n}.
LetR be the set of defining relations:

zxy = xzy and yzx = yxz x < y < z,

xyx = xxy and xyy = yxy x < y.

The Plactic monoid Pl(An) is defined by the presentation 〈An|R〉.
Pl(An) = A∗n/ ∼ where ∼ is the smallest congruence on the free
monoid A∗n containingR.

e.g. 212313 ∼ 212133

I This is the most efficient way to define the Plactic congruence ∼.
I The relations in this presentation are called the Knuth relations.







A (semi-standard) tableau

1 1 1 2 2 4 4
2 2 3 3
4 5 5 6
6 8

Properties

I Is a filling of the Young diagram with symbols from An.
I Rows read left-to-right are non-decreasing.
I Columns read down are strictly increasing.
I Longer rows are above shorter rows.



Schensted column insertion algorithm

I Associates to each word w ∈ A∗n a tableau P(w).
I The algorithm which produces P(w) is recursive.

Input: Any letter x ∈ An and a tableau T .

Output: A new tableau denoted x→ T .

The idea: Suppose T = C1C2 . . .Cr where Ci are the columns of T .
I We try to insert the box x under the column C1 if we can.

I If this fails, the box x will be put into column C1 higher up
and will “bump out” to the right a box y where y is the
minimal letter in C1 such that x ≤ y.

I We then take the bumped out box y and try and insert it under
the column C2, and so on...



Schensted’s column insertion algorithm

Example
A4 = {1 < 2 < 3 < 4} if w = 232143 then P(w) is obtained as:

2 ,

2
3
, 2 2

3
, 1 2 2

3
,

1 2 2
3
4

,
1 2 2
3 3
4

= P(w).

Observation: 231 = 213 is a Knuth relation and P(231) = P(213)

2 , 2
3
, 1 2

3
= P(231), 2 , 1 2 , 1 2

3
= P(213).

Theorem (Lascoux and Shützenberger (1981))
Define a relation ∼ on A∗n by u ∼ w⇔ P(u) = P(w). Then ∼ is the
Plactic congruence and Pl(An) = A∗n/ ∼ is the Plactic monoid.
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The Plactic monoid via tableaux

w(T) = the word obtained by reading the columns of a tableau T
from right to left and top to bottom (Japanese reading).

Example: If T =
1 1 4
2 5
3

then w(T) = 415123.

Theorem (Lascoux and Shützenberger (1981))
The set of word readings of tableaux gives a transversal (a set of
normal forms) of the ∼-classes of the Plactic monoid.

Conclusion: The Plactic monoid is the monoid of tableaux:

Elements The set of all tableaux over An = {1 < 2 < · · · < n}.
Products Computed using Schensted insertion.
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Crystals

2

2Fig 8.4 from Hong and Kang’s book An introduction to quantum groups and
crystal bases.



Crystal graphs
(following Kashiwara and Nakashima (1994))

Idea: Define a directed labelled digraph ΓAn with the properties:
I Vertex set = A∗n
I Each directed edge is labelled by a symbol from the label set

I = {1, 2, . . . , n− 1}.
I For each vertex u ∈ A∗n every i ∈ I there is at most one directed

edge labelled by i leaving u, and at most one entering u

u vi
, w ui

I If u vi
then |u| = |v|, so words in the same component

have the same length as each other. In particular, connected
components are all finite.



Building the crystal graph ΓAn

An = {1 < 2 < . . . < n}

We begin by specifying structure on the words of length one

1 2 . . . n− 1 n1 2 n − 2 n − 1

This is known as a Crystal basis.

Kashiwara operators
For each i ∈ {1, . . . , n− 1} we define partial maps ei and fi on the
letters An called the Kashiwara crystal graph operators. For each edge

a b
i

,

we define fi(a) = b and ei(b) = a.



Kashiwara operators on words
Let u ∈ A∗n and i ∈ I.

Question: Are either / both of the following edges in ΓAn?

u fi(u),
i

ei(u) ui

Algorithm:
I Under each letter a of w write

I + if fi(a) is defined, and
I − if ei(a) is defined.

I Take this string of −’s and +’s and delete all adjacent +−.
I The resulting string is then of the form −q+r.
I fi(w): obtained by applying fi to the letter a above the leftmost

remaining +, if it exists, otherwise is undefined.
I ei(w): obtained by applying ei to the letter a above the rightmost

remaining −, if it exists, otherwise is undefined.



Example: Computation of ei(u) and fi(u)

1 2 3
1 2

a fi(a)
i

,
ei(b) b

i

Example
Let u = 33212313232 and let i = 2 ∈ I = {1, 2}.

3 3 2 1 2 3 1 3 2 3 2

+ + + +
− − + + − − + − +
− − +

3 3 2 1 2 3 1 3 2 3 3 = f2(u)
3 2 2 1 2 3 1 3 2 3 2 = e2(u)



Example: Computation of ei(u) and fi(u)

1 2 3
1 2

a fi(a)
i

,
ei(b) b

i

Example
Let u = 33212313232 and let i = 2 ∈ I = {1, 2}.

3 3 2 1 2 3 1 3 2 3 2
+ + + +

− − + + − − + − +
− − +

3 3 2 1 2 3 1 3 2 3 3 = f2(u)
3 2 2 1 2 3 1 3 2 3 2 = e2(u)



Example: Computation of ei(u) and fi(u)

1 2 3
1 2

a fi(a)
i

,
ei(b) b

i

Example
Let u = 33212313232 and let i = 2 ∈ I = {1, 2}.

3 3 2 1 2 3 1 3 2 3 2
− − + + − − + − +

− − + + − − + − +
− − +

3 3 2 1 2 3 1 3 2 3 3 = f2(u)
3 2 2 1 2 3 1 3 2 3 2 = e2(u)



Example: Computation of ei(u) and fi(u)

1 2 3
1 2

a fi(a)
i

,
ei(b) b

i

Example
Let u = 33212313232 and let i = 2 ∈ I = {1, 2}.

3 3 2 1 2 3 1 3 2 3 2
− − + + − − + − +
− − + + − − + − +

− − +

3 3 2 1 2 3 1 3 2 3 3 = f2(u)
3 2 2 1 2 3 1 3 2 3 2 = e2(u)



Example: Computation of ei(u) and fi(u)

1 2 3
1 2

a fi(a)
i

,
ei(b) b

i

Example
Let u = 33212313232 and let i = 2 ∈ I = {1, 2}.

3 3 2 1 2 3 1 3 2 3 2
− − + + − − + − +
− − + + − − + − +
− − +

3 3 2 1 2 3 1 3 2 3 3 = f2(u)
3 2 2 1 2 3 1 3 2 3 2 = e2(u)



Example: Computation of ei(u) and fi(u)

1 2 3
1 2

a fi(a)
i

,
ei(b) b

i

Example
Let u = 33212313232 and let i = 2 ∈ I = {1, 2}.

3 3 2 1 2 3 1 3 2 3 2
− − + + − − + − +
− − + + − − + − +
− − +

3 3 2 1 2 3 1 3 2 3 3 = f2(u)

3 2 2 1 2 3 1 3 2 3 2 = e2(u)



Example: Computation of ei(u) and fi(u)

1 2 3
1 2

a fi(a)
i

,
ei(b) b

i

Example
Let u = 33212313232 and let i = 2 ∈ I = {1, 2}.

3 3 2 1 2 3 1 3 2 3 2
− − + + − − + − +
− − + + − − + − +
− − +

3 3 2 1 2 3 1 3 2 3 3 = f2(u)
3 2 2 1 2 3 1 3 2 3 2 = e2(u)



The crystal graph ΓAn

Definition
The crystal graph ΓAn is the directed labelled graph with:
I Vertex set: A∗n
I Directed labelled edges: for u ∈ A∗n

u fi(u)
i

,
ei(u) ui

Notes

I When defined ei(fi(u)) = u and fi(ei(u)) = u.
I It follows from the definition that (when defined) we have

ei(u) = u′ei(a)u′′ for some decomposition u ≡ u′au′′ where a is
a single letter.



Part of the crystal graph for A3 = {1 < 2 < 3}



Part of the crystal graph for A3 = {1 < 2 < 3}



Plactic monoid via crystals
Definition: Two connected components B(w) and B(w′) of ΓAn are
isomorphic if there is a label-preserving digraph isomorphism
f : B(w)→ B(w′).

Fact: In ΓAn if B(w) ∼= B(w′) then there is a unique isomorphism
f : B(w)→ B(w′).

Theorem (Kashiwara and Nakashima (1994))
Let ΓAn be the crystal graph with crystal basis

1 2 . . . n− 1 n1 2 n − 2 n − 1

Define a relation ∼ on A∗n by

u ∼ w⇔ ∃ an isomorphism f : B(u)→ B(w) with f (u) = w.

Then ∼ is the Plactic congruence and Pl(An) = A∗n/ ∼ is the Plactic
monoid.
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Knuth relations via crystal isomorphisms



Knuth relations via crystal isomorphisms3

3(Confession: I lied a bit. Actually, crystal isomorphisms must also preserve
“weight”. For Pl(An) weight preserving means “content preserving”.)



Three isomorphic components for A3 = {1 < 2 < 3}.

2113, 2131, and 2311 all represent the same element.



Where do crystals come from?

J. Hong, S.-J. Kang,
Introduction to Quantum Groups and Crystal Bases.
Stud. Math., vol. 42, Amer. Math. Soc., Providence, RI, 2002.

I Take a “nice” Lie algebra g. Nice means symmetrizable
Kac-Moody Lie algebra e.g. a finite-dimensional semisimple Lie
algebra.

I From g construct its universal enveloping algebra U(g) which is
an associative algebra.

I Drinfeld and Jimbo (1985): defined q-analogues Uq(g), quantum
deformations, with parameter q

I q = 1: Uq(g) coincides with U(g)
I q = 0: is called crystallisation (Kashiwara (1990)).



Where do crystals come from?

I Crystal bases are bases of Uq(g)-modules at q = 0 that satisfy
certain axioms.

I Kashiwara (1991): proves existence and uniqueness of crystal
bases of finite dimensional representations of Uq(g).

I Every crystal basis has the structure of a coloured digraph (called
a crystal graph). The structure of these coloured digraphs has
been explicitly determined for certain semisimple Lie algebras
(special linear, special orthogonal, symplectic, some exceptional
types).

I The crystal constructed from the crystal basis using Kashiwara
operators is then a useful combinatorial tool for studying
representations of Uq(g).

I e.g. For decomposing tensor products of Uq(g)-modules.



Crystal bases and crystal monoids
Lie algebra Crystal basis Monoid

type

An: sln+1
1 2 . . . n− 1 n1 2 n − 2 n − 1

Pl(An)

Bn: so2n+1 1 2 . . . n 0 n . . . 2 1
1 2 n − 1 n n n − 1 2 1

Pl(Bn)

Cn: sp2n
1 2 . . . n n . . . 2 1

1 2 n − 1 n n − 1 2 1
Pl(Cn)

Dn: so2n

1 2 . . . n− 1

n

n

n− 1 . . . 2 1
1 2 n − 2

n − 1

n

n

n − 1

n − 2 2 1

Pl(Dn)

G2
1 2 3 0 3 2 1

1 2 1 1 2 1
Pl(G2)



Crystal monoids in general

Combinatorial crystals

I Crystal basis = finite labelled directed graph, vertex set X, label
set I, satisfying certain axioms so that Kashiwara operators
ei, fi (i ∈ I) are well defined.

I A weight function wt : X∗ → P where P is the weight monoid.
I Construct a (weighted) crystal graph ΓX from this data

I Vertex set: X∗

I Directed labelled edges: determined by ei, fi

Definition (Crystal monoid)
Let ΓX be a crystal graph. Define ≈ on X∗ where u ≈ v if there is a
(weight preserving) isomorphism θ : B(u)→ B(v) with θ(u) = v.
Then ≈ is a congruence on X∗ and X∗/ ≈ is called the crystal monoid
of ΓX .



Known results and our interest

Known results on crystals An, Bn, Cn, Dn, or G2 and their monoids:

1. Crystal bases - combinatorial description Kashiwara and
Nakashima (1994).

2. Tableaux theory and Schensted-type insertion - Kashiwara and
Nakashima (1994), Lecouvey (2002, 2003, 2007).

3. Finite presentations via Knuth-type relations - Lecouvey (2002,
2003, 2007).

General question: To what extent can tools from theoretical
computer science and formal language theory such as
I Finite complete (Noetherian and confluent) rewriting systems
I Finite state automata

be used to compute efficiently with crystals and crystal monoids?

Our results so far: give positive answers for all of the above types.
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Automatic structures

Automatic groups and monoids
Defining property: ∃ a regular language L ⊆ A∗ such that every
element has at least one representative in L, and ∀a ∈ A ∪ {ε}, there is
a finite automaton recognising pairs from L that differ by
multiplication by a.

I Automatic groups
I Capture a large class of groups with easily solvable word problem
I Examples: finite groups, free groups, free abelian groups, various

small cancellation groups, Artin groups of finite and large type,
Braid groups, hyperbolic groups.

I Automatic semigroups and monoids
I Classes of monoids that have been shown to be automatic include

divisibility monoids and singular Artin monoids of finite type.

Proposition (Campbell, Robertson, Ruškuc & Thomas (2001))
Automatic monoids have word problem solvable in quadratic time.



Automatic structures for crystal monoids

Theorem (Cain, RG, Malheiro (2015))
The monoids Pl(An), Pl(Bn), Pl(Cn), Pl(Dn), and Pl(G2) are all
automatic. In particular each of these monoids has word problem that
is solvable in quadratic time.

I In each case there is a tableau theory, and we use a larger
generating set Σ of admissible columns.

I For each X ∈ {An,Bn,Cn,Dn,G2} we construct a finite complete
rewriting system (Σ,T) that presents Pl(X).

I A tabloid is a sequence of admissible columns. The rewriting
system rewrites tabloids tableaux.

I Regular language of representatives for the automatic structure is
the language of irreducible words of (Σ,T).

I Crystal bases theory reduces problem to highest-weight words.
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Kashiwara operators preserve shape



Rewriting tabloids

I Multiplying two adjacent admissible columns of a tabloid brings
us one step closer to being a tableau.



Crystal-theoretic consequences

Corollary (Cain, RG, Malheiro (2015))
For the crystal graphs of types An, Bn, Cn, Dn, or G2, there is a
quadratic-time algorithm that takes as input two vertices and decides
whether they lie in the same position in isomorphic components.

Corollary (Cain, RG, Malheiro (2015))
For the crystal graphs of types An, Bn, Cn, Dn, or G2, there is a
quadratic-time algorithm that takes as input two vertices and decides
whether they lie in isomorphic components.



Ongoing and future work

I Are there any further consequences to be drawn from our results
I For crystals? For Lie theory?

I Implications for the Plactic algebras of Littelmann (1996)?

We are developing further the general theory of crystal monoids.

I Examples of crystal monoids (with weight monoid Zm)
I free monoids, free commutative monoids, the bicyclic monoid,

the Thompson monoid (?), ...

I Squier graph / crystal graph duality.
I Finite presentations / complete rewriting systems / automatic

structures?
I What can we say about complexity of the word problem?
I When do we have a tableaux theory? Highest weight words?
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