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Conference on Semigroups and Automata

Part I: semigroups: here monoids.

Commercial break

Part II: automata: here formal languages.
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Part I: Varieties of finite monoids

A variety is a class of finite monoids which is closed under finite
direct products and divisors. A monoid N is a divisor of M if N is
the homomorphic image of a submonoid of M . Notation: N �M .

Example

1, Ab, Sol, G are varieties of groups.

If V is a variety, then

V ∩G = {G ∈ V | G is a group}

is a variety of groups.

If H is a variety of groups, then we let

H = {M ∈Mon | all subgroups of M are in H} .

Example

1 = AP, G = Mon, V ⊆ V ∩G.
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About a recent work of Jorge Almeida and Onďrej Kĺıma

Jorge Almeida and Onďrej Kĺıma defined the bullet operation
Rees(U,V) as the least variety of monoids containing all Rees
extensions Rees(N,L, ρ) for N ∈ U, L ∈ V, and ρ : N → L.

A variety V is called bullet idempotent if V = Rees(V,V).

Almeida, Kĺıma, J. Pure Appl. Algebra, 220:1517 – 1524, 2016

H is bullet idempotent.

Question. Is it true that all bullet idempotent varieties are of the
form H?

Answer. (D., Walter): Yes.

This shows that H is a robust variety admitting many other
characterizations. This relates, in particular, to classical results by
Schützenberger.
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Rees extensions

Let N,L be monoids and ρ : N → L be any mapping.

As a set we define

Rees(N,L, ρ) = N ∪ (N × L×N) .

The multiplication · on Rees(N,L, ρ) is given by

n · n′ = nn′

n · (n1,m, n2) · n′ = (nn1,m, n2n
′)

(n1,m, n2) · (n′1,m′, n′2) = (n1,mρ(n2n
′
1)m

′, n′2).

Lemma

Let N � N ′ and L � L′. Given ρ : N → L, there exists a mapping
ρ′ : N ′ → L′ such that Rees(N,L, ρ) is a divisor of Rees(N′,L′, ρ′).

Emil Artin, Geometric algebra (1957), page 14, paragraph 3

“It is my experience that proofs involving matrices can be
shortened by 50% if one throws the matrices out.”
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Local divisor technique

The local divisor technique was established in finite semigroup
theory around 2004 as a tool to simplify inductive proofs. (In
associative algebra the concept is due to Kurt Meyberg 1972.2)

Let M be a monoid and c ∈M . Consider the set cM ∩Mc and
define a new multiplication

xc ◦ cy = xcy.

Then Mc = (cM ∩Mc, ◦, c) is monoid: the local divisor at c.

Facts

λc : {x ∈M | cx ∈Mc} →Mc given by λc(x) = cx is a
surjective homomorphism. Hence, Mc is a divisor of M .

If c is a unit, then Mc is isomorphic to M .

If c = c2, then Mc is the standard “local monoid”.

If c is not a unit, then 1 /∈Mc. Hence, if c is not a unit and if
M is finite, then |Mc| < |M |.

2As I learned from Ben Steinberg
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Local Rees extensions

Let N ⊆M be a proper submonoid and c ∈M \N which is not a
unit such that N ∪ {c} generate M . Hence, N and Mc are divisors
of M and |N | , |Mc| < |M |. Let ρ(x) = cxc.

LocRees(N, c) = Rees(N,Mc, ρ) is called a local Rees extension.

Lemma

M is a quotient monoid of LocRees(N, c).

Proof.

Define ϕ : LocRees(N, c)→M by ϕ(n) = n for n ∈ N and
ϕ(u, x, v) = uxv for (u, x, v) ∈ N ×Mc ×N . Since

ϕ((u, x, v)(s, y, t)) = ϕ(u, x ◦ cvsc ◦ y, t) = ϕ(u, xvsy, t)

= (uxv)(syt) = ϕ(u, x, v)ϕ(s, y, t),

ϕ is a homomorphism. Obviously, M = N ∪NMcN and thus ϕ is
surjective.
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Theorem

Let H be a variety of groups and V be the smallest variety which
is closed under local Rees extensions and which contains H. Then
we have V = H.

Proof.

The inclusion V ⊆ H follows from Almeida and Kĺıma. For the
other direction, let M ∈ H. If M is a group, then M ∈ H and we
are done. Otherwise choose a minimal set of generators
c, c1, . . . , ck. Wlog. c is not a unit. Consider N = 〈c1, . . . , ck〉 and
Mc. By induction, N , Mc ∈ V and hence LocRees(N, c) ∈ V.
Hence, the divisor M is in V.

Every bullet idempotent variety is of the form H. More precisely:

Corollary

Let V be a variety and H = V ∩G, then

V ⊆ LocRees(H) = Rees(V) = H = Rees(H).
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Example

Let B = {1, a, b, 0} with xy = 0 unless x = 1 or y = 1 and
S3 = 〈δ, σ〉 where δ is a “Drehung” (rotation: δ3 = 1) and σ is a
“Spiegelung” (reflection: σ2 = 1). Define

M = (S3 ×B)/ {(δ, a) = (1, a)} .

Then M = {0} ∪S3 ∪ a 〈σ〉 ∪ bS3 has fifteen elements.
The local Rees decomposition is as follows.

M

M [a, σ, δ]

S3 M [a, σ, δ]a ' Z/2Z ∪ {0}

Z/2Z (M [a, σ, δ]a)0 ' {1}

Mb ' S3 ∪ {0}

S3 (Mb)0 ' {1}
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Part II. A formal language characterization of H

Prefix codes of bounded synchronization delay

K ⊆ A+ is called prefix code if it is prefix-free. That is: u, uv ∈ K
implies u = uv.

A prefix-free language K is a code since every word u ∈ K∗ admits
a unique factorization u = u1 · · ·uk with k ≥ 0 and ui ∈ K.

A prefix code K has bounded synchronization delay if for some
d ∈ N and for all u, v, w ∈ A∗ we have:
if uvw ∈ K∗ and v ∈ Kd, then uv ∈ K∗.

Example

B ⊆ A yields a prefix code with synchronization delay 0. If
c ∈ A \B, then B∗c is a prefix code with synchronization delay 1.
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Application

Assume that Alice sends a message using a prefix code K with
synchronization delay d of the form

m = c1 · · · ck

where ci ∈ K. Bob is late and receives a suffix of m, only:

?uvw.

such that v ∈ Kd. Then Bob can recover the suffix w as suffix

w = cp · · · ck

with d ≤ p ≤ k.
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Notation

A = finite alphabet

A∗ = finite words, Aω = infinite words, A∞ = A∗ ∪Aω.

h : A∗ →M recognizes L ⊆ A∗ if h−1(h(L)) = L.

If V is a variety, then
V(A∗) = {L ⊆ A∗ | some h : A∗ →M recognizes L}
M is aperiodic if all subgroups are trivial.

Regular languages: finite subsets & closure under union,
concatenation, and Kleene-star
= recognizable by a finite monoid.

Star-free languages: finite subsets & closure under union,
concatenation, complementation, but no Kleene-star
= recognizable by a finite aperiodic monoid.
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H = a variety of groups

Lemma (Schützenberger)

Let K ∈ H(A∗) be a prefix code of bounded synchronization delay.
Then: K∗ ∈ H(A∗).

Proof.

We have
A∗ \K∗ =

⋃
0≤i

(
KiAA∗ \Ki+1A∗

)
.

Now, let d be the synchronization delay of K. Then we can write

A∗ \K∗ = A∗Kd(AA∗ \KA∗) ∪
⋃

0≤i<d
(KiAA∗ \Ki+1A∗).
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H-controlled star
Cet obscur objet du désir (Luis Buñuel 1977)

Let H be a variety of groups and G ∈ H. Let K ⊆ A+ be a prefix
code of bounded synchronization delay. Consider any mapping
γ : K → G and define Kg = γ−1(g). Assume further that
Kg ∈ H(A∗) for all g ∈ G.

With these data the H-controlled star Kγ? is defined as:

Kγ? = {ug1 · · ·ugk ∈ K
∗ | ugi ∈ Kgi ∧ g1 · · · gk = 1 ∈ G} .

Example

If G is the trivial group {1}, then Kγ? = K∗ is the usual star.

Proposition (Schützenberger, RAIRO, 8:55–61, 1974.)

H(A∗) is closed under the H-controlled star.
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Schützenberger’s SDH classes

By SDH(A∗) we denote the set of regular languages which is
inductively defined as follows.

1 Finite subsets of A∗ are in SDH(A∗).
2 If L,K ∈ SDH(A∗), then L ∪K,L ·K ∈ SDH(A∗).
3 Let K ⊆ A+ be a prefix code of bounded synchronization

delay, γ : K → G ∈ H, and γ−1(g) ∈ SDH(A∗) for all g.
Then the H-controlled star Kγ? is in SDH(A∗).

Note: the definition doesn’t involve any complementation!

Proposition (Schützenberger (1974) reformulated)

SDH(A∗) ⊆ H(A∗)

Theorem (Schützenberger (1975) and (1974))

SD1(A
∗) = 1(A∗) = AP(A∗) and SDAb(A

∗) = Ab(A∗)
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Schützenberger’s result holds for all varieties.

Theorem (D., Walter. To appear ICALP, Rome, July 12-15, 2016)

Let H be any variety of finite groups. Then we have

SDH(A∗) = H(A∗).

Remarks on the proof

The proof uses an induction based on the “local divisor
technique”.

The result that all bullet idempotent varieties are of the form
H(A∗) is an off-spring of that proof.
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Applications of the local divisor technique

Simplified proof for LTL = FO = AP for finite and infinite
words and “traces”. D. and Gastin (2006)

“One-page-proof” for SF = AP. Kufleitner (2010)

Aperiodic languages are Church-Rosser congruential.
D., Kufleitner, and Weil (2011)

Regular languages are Church-Rosser congruential.
D., Kufleitner, Reinhardt, and Walter (2012)

Simplified proof for the Krohn-Rhodes Theorem.
D., Kufleitner, and Steinberg (2012)

SD(Aω) = AP(Aω). D. and Kufleitner (2013)

New interpretation of Green’s Lemma: Schützenberger
categories. Costa and Steinberg (2014)

SDH(A∞) = H(A∞). D. and Walter (2016)

Thank you and “Happy birthday” to Cracinda and Jorge!
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