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Open problem
Is the soluble kernel of a finite semigroup computable?
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Coulbois, Sapir and Weil claimed in 2003: "the solution of this
difficult open question would have interesting consequences in
finite monoid theory and in computational complexity"

[CSW03] T. Coulbois, M. Sapir and P. Weil, A note on the
continuous extensions of injective morphisms between free
groups to relatively free profinite groups, Publ. Mat., 47
(2003), 477–487.

[MSW01] S. Margolis, M. Sapir and P. Weil, Closed subgroups in
pro-V topologies and the extension problem for inverse
automata, Int. J. Algebra and Comput., Vol. 11, No. 4 (2001),
405–445.

[ST01] H. Straubing and B. Thérien, Regular languages defined by
generalized first-order formulas with a bounded number of
bound variables, in: “STACS 2001” (Dresden), Lecture Notes
in Comput. Sci. 2010, Springer, Berlin, 2001, pp. 551–562.
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Recently, B. Steinberg published a post in the following
mathoverflow website:
http://mathoverflow.net/questions/156761/computing-the-pro-
solvable-closure-of-a-finitely-generated-subgroup-of-a-free-gr

Theorem A
The soluble kernel of a finite semigroup is computable
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Definition
Let S be a semigroup. Then, the kernel of S is the intersection of
the kernels of all relational morphisms from S to a group G . This
subsemigroup is denoted by K(S).

This notion was first introduced by J. Rhodes and B. Tilson, using
the terminology of “Type II elements”, in their 1972 seminar paper:

[RT72] J. Rhodes and B. R. Tilson, Improved lower bounds for the
complexity of finite semigroups, J. Pure Appl. Algebra, 2
(1972) 13–71.

Theorem ([RT72])
The regular elements of the kernel are computable.
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Theorem (Type II Theorem)
The kernel of every semigroup is computable.

[Ash91] C. J. Ash, Inevitable graphs: a proof of the type II
conjecture and some related decision procedures, Int. J.
Algebra Comput., 1 (1991), 127–146.

[RZ93] L. Ribes and P. Zalesskǐı, On the profinite topology on a
free group, Bull. London Math. Soc., 25 (1993), 37–43.

[PR91] J.-É. Pin and C. Reutenauer, A conjecture on the Hall
topology for the free group, Bull. London Math. Soc., 23
(1991), 356–362.
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Consequences of Type II Theorem

[M91] S. W. Margolis, Consequences of Ash’s proof of the Rhodes
Type II Conjecture, Proceedings of the Monash Conference on
Semigroup Theory, World Scientific, Singapore (1991),
180–205.

[HMPR91] K. Henckell, S. W. Margolis, J.-É. Pin and J. Rhodes,
Ash’s type II theorem, profinite topology and Malcev products:
Part I, Int. J. Algebra and Comput., 1 (1991), 411–436.

Definition
Let V be a variety of groups and S be a semigroup. Then:

KV(S) =
⋂
{τ−1(1) : τ : S ◦ // G ∈ V }

is a subsemigroup of S, called the V-kernel of S.
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Open problem
For which varieties of groups V is the V-kernel of a semigroup
computable?
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Vp = {G : G is a p-group}, for every p ∈ P.

[RZ94] L. Ribes and P. Zaleskǐı, The pro-p topology of a free
group and algorithmic problems in semigroups, Int. J.
Algebra Comput., 4 (1994), 359–374.

Ab = {G : G abelian group}.

[D98] M. Delgado, Abelian pointlikes of a monoid, Semigroup
Forum 56 (1998), 339–361.

V every variety of abelian groups with decidable membership
problem and which generates the abelian group variety.

[S99] B. Steinberg, Monoid kernels and profinite topologies
on the free abelian group, Bull. Austral. Math. Soc., 60
(1999), 391–402.

N = {G : G nilpotent group}.

[ASS15] J. Almeida, M. H. Shahzamanian and B. Steinberg
The pro-nilpotent group topology on a free group,
arXiv:1511.01947, 2015.
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Ingredients of the proof of Theorem A
Theorem in [RZ94]: If V is an extension-closed variety of
groups, the finite product of n pro-V closed finitely generated
subgroups in a free group is pro-V closed. As a consequence,
in the case of soluble groups S, if the pro-S closure of a
finitely generated subgroup is computable, then the S-kernel is
computable.
Theorem in [MSW01]: If V is an extension-closed variety of
groups, computing the pro-V closure of a finitely generated
subgroup of a free group is equivalent to computing the
V-extensible closure of a finitely generated subgroup of a free
group. As a consequence, if the regular elements of the
S-kernel are computable, then the pro-S closure of a finitely
generated subgroup is computable. Therefore, the
computability of the regular elements of the soluble kernel
implies the computability of the soluble kernel.
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A. Ballester-Bolinches, R. Esteban-Romero and V.
Pérez-Calabuig, On generalised kernels of finite semigroups,
submitted.

Reduction theorem
A reduction theorem about the computability of the elements
of KV(S) ∩ J , with J regular J -class.
It is possible to consider J , 0-minimal in S, so that
J0 =M0(G ,A,B,C). Then we can construct a group
G0 ∈ V, which is a quotient of G, and a set of indices Λ0,
such that S acts partially injectively on the set
X = {(i , g) : i ∈ Λ0, g ∈ G0}.
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Reduction theorem
We can construct a semigroup of partial one-to-one
transformatrions, U, with a unique 0-minimal J -class J̄ , such
that J̄0 =M0(G0,Λ0,Λ0, Ir0) is a Brandt semigroup
(r0 = |Λ0|).
KV(S) ∩ J is computable if, and only if, KV(U) ∩ J̄ is
computable.

We can suppose U Ã-generated, where Ã = A ∪ A−1 and A is
an alphabet.
We can construct an inverse A-graph, ΓU , such that U is its
inverse transition monoid. Note that V (ΓU) = X .

Vicente Pérez Calabuig (Universitat de València) The soluble kernel of a finite semigroup is computable



Theorem
Let Γ be an inverse A-graph. Let us consider in V (Γ) the relation,
v ∼ v ′ if there exists x ∈ KV(M(I(Γ)) such that vx = v ′. Then, ∼
is the least inverse A-graph congruence in Γ, such that Γ/ ∼ is
V-extensible.

[S01] B. Steinberg, Finite state automata: a geometric approach,
Trans. Amer. Math. Soc, Vol. 353, No. 9 (2001), 3409–3464

Theorem
Let us consider in V (ΓU) = X the relation, (i , g) ∼ (i ′, g ′) if, and
only if, (i , g−1g ′, i ′) ∈ KV(U) ∩ J̄ . Then, ∼ is the least inverse
A-graph congruence in ΓU , such that ΓU/ ∼ is V-extensible.

Proposition
We can denote such least inverse A-graph congruence by ∼V.
Then ∼V is computable if, and only if, KV(U) ∩ J̄ is computable.
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Theorem
Let ∼V be the least inverse A-graph congruence in ΓU such that
ΓU is V-extensible in ΓH , with M(ΓH) = H ∈ V. Then, there exists
a group G and ΓG with M(ΓG) = G, such that the following
assertations hold:

1 ΓU is embedded in ΓG .
2 If we consider in ΓG the relation in V (ΓG) given by: v ∼′V v ′

if, and only if, there exists an element g ∈ GV such that
vg = v ′. Then, ΓG/ ∼′V= ΓH .

3 In particular, ∼V= (∼′V)|V (ΓU )×V (ΓU ).
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Definition
Given an equivalence relation ∼ in V (ΓU), we denote by ∼ the
least inverse A-graph congruence in ΓU which contains ∼.

Let S be a semigroup. For each n ∈ N, we define:

Kn
V(S) = KV(Kn−1

V (S))

There exists n ∈ N for wich Kn
V(S) = Kn+1

V (S). We denote by
Kω
V (S) such subsemigroup.

Then, for every n ∈ N, we define in V (ΓU) = X the equivalence
relation:

(i , g) ∼n
V (i ′, g ′) if, and only if, (i , g−1g ′, i ′) ∈ Kn

V(U) ∩ J̄
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Theorem
Let V be an extension-closed variety of groups. Then, in ΓU , it
holds:

∼n
V =∼V for every n ∈ N

Theorem
Let S be the variety of soluble groups. Let N and Ab be the
variety of, respectively, nilpotent and abelian groups. Then, in ΓU ,
it holds:

∼S= ∼ω
N, ∼S= ∼ω

Ab

Corollary
Consequently, ∼S is computable in ΓU and therefore, KS(U) ∩ J̄ is
computable.
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