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Saeid Alirezazadeh University of Porto

Identifying The Structure of The Relatively Free Pro-BSS Forest Alge-
bras
Forest algebras are defined for investigating languages of forests [ordered sequences] of
unranked trees, where a node may have more than two [ordered] successors [4]. A profinite
algebra is defined to be a projective limit of a projective system of finite algebras [2]. For
BSS1, the pseudovariety of forest algebras generated by all syntactic forest algebras of
piecewise-testable forest languages, we say that a profinite algebra S is pro-BSS if it is a
projective limit of members of BSS.
The natural analog for forest algebras of the structural identification of the relatively
free pro-J semigroup ΩnJ as an algebra of type (2,1), see [1,Section 8.2], is to study
the relatively free pro-BSS forest algebra ΩABSS, as an ω-algebra, which retain the
equational axioms of forest algebras and are endowed with additional unary operations.
In the study of the pseudovariety BSS, from [3,Theorem 2 and Proposition 19] and [1,
Section 8.2], we obtained certain suitable identities denoted by Σ. We described an
algorithm to compute the so-called canonical form for an element of the free ω-algebra A
modulo Σ and we proved it is correct. If the relationship between the free ω-algebra in a
certain variety and the free pro-BSS algebra is as in the word analog [1,Section 8.2], then
the algorithm allows us to identify the structure of the latter. We solved the word problem
for the free ω-algebra in the variety V of ω-algebras defined by the set Σ. Denoting by
FAV the V-free algebra on A, we then have an ω-algebra homomorphism

ϕ : FAV → ΩABSS

such that xi 7→ xi (i = 1, . . . , n).
Speaker in Algebra Workshop 2014-CAUL 34 Years presented a talk: “Forest Algebras,
ω-Algebras and A Canonical Form for Certain Relatively Free ω-Algebra” and aimed to
identify the structure of the relatively free pro-BSS forest algebras, however it remained
open to show that the ω-algebra homomorphism ϕ is a bijection. In this talk we present
a proof for that ϕ is bijective.

1Stands for Bojańczyk, Segoufin, and Straubing as it was first introduced in [3].
References
1. Jorge Almeida, Finite semigroups and universal algebra, Series in Algebra, vol. 3, World Scientific
Publishing Co., Inc., River Edge, NJ, Singapore, Translated from the 1992 Portuguese original and re-
vised by the author.
2. Jorge Almeida, Profinite semigroups and applications, Structural Theory of Automata, Semigroups,
and Universal Algebra (New York) (Valery B. Kudryavtsev and Ivo G. Rosenberg, eds.), NATO Science
Series II: Mathematics, Physics and Chemistry, vol. 207, Springer, 2005, Proceedings of the NATO Ad-
vanced Study Institute on Structural Theory of Automata, Semigroups and Universal Algebra, Montral,
Qubec, Canada, 7-18 July 2003, pp. 1–45.
3. Mikolaj Bojańczyk, Luc Segoufin, and Howard Straubing, Piecewise testable tree languages, Proceed-
ings of the 2008 23rd Annual IEEE Symposium on Logic in Computer Science (Washington, DC, USA),
IEEE Computer Society, 2008, pp. 442–451.
4. Mikolaj Bojańczyk and Igor Walukiewicz, Forest algebras, Logic and automata, Texts Log. Games,
vol. 2, Amsterdam Univ. Press, Amsterdam, 2008, pp. 107–131.
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João Araújo Universidade Aberta

The best definition
In this talk I will raise a number of questions and try to provide some answers.
Among others:

(1) What is automated reasoning (AR)?
(2) Has AR solved any important open question?
(3) Is it useful in real mathematics or only for equational logic?
(4) Is AR going to put mathematicians out of business?
(5) Is semigroup theory especially fit to AR?
(6) Why AR appears linked with commuting graphs or conjugation in semigroups?
(7) Are there any news coming from the beautiful world that has been knit by permutation
groups and transformation semigroups?
(8) In particular, are there any news on synchronization?
(9) It is known for many years that the symmetric group on a finite set X together with one
singular map generate all singular transformations on X. What about if we have some group
G < Sym(X)?
(10) Are there any news on idempotent generated semigroups?
(11) Is there any link between this talk and its title?

Karl Auinger University of Vienna

On the finite basis problem for deformed diagram monoids and related monoids
I shall shortly review some of the results of the paper [1], namely a sufficient condition for an (involutory)
semigroup to be non-finitely based (NFB) and applications thereof to Kauffman monoids and ‘wire
monoids’. In the main part of the talk I shall present some new results. These include:

(1) the (Graham–Lehrer) affine Temperley–Lieb monoids ATLn of rank n are NFB iff n ≥ 3;
(2) the (Martin–Mazorchuk) monoids MMn of deformed partitioned binary relations of rank n are

NFB iff n ≥ 1;
(3) the monoids 2Cob(n, n) of all 2-cobordisms of rank n are NFB iff n ≥ 1.

The definition and the structure of these monoids will be also discussed. The NFB-property is enjoyed
by the ‘plain’ monoids as well as by their involutory versions. This is joint work with M. V. Volkov.
References
1. K. Auinger, Y. Chen, X. Hu, Y. Luo, M. V. Volkov, The finite basis problem for Kauffman monoids,
Algebra Universalis 74 (2015), no. 3-4, 333-350.

Muhammed P. A. Azeef Indian Inst. of Sci. Edu. and Research

Cross-connections of linear transformation semigroup
The talk will be on the theory of cross-connections with special emphasis on the linear transformation
semigroup. In the study of the structure theory of regular semigroups, T E Hall used the principal
ideals of the regular semigroup to analyse its structure. P A Grillet refined Hall’s theory to abstractly
characterize the ideals as regular partially ordered sets and constructing the fundamental image of the
regular semigroup as a cross-connection semigroup. Later K S S Nambooripad generalized the idea to
any arbitrary regular semigroups by characterizing the principal ideals of a regular semigroup as normal
categories. A cross-connection between two normal categories determines a (regular) cross-connection
semigroup and conversely every regular semigroup is isomorphic to a cross-connection semigroup for a
suitable cross-connection.
In the talk, I will briefly describe the general cross-connection theory for regular semigroups and use it
to study the normal categories arising from the semigroup TV of singular linear transformations on an
arbitrary vectorspace V over a field K. The principal left ideals of TV are characterized as the category
S(V ) of proper subspaces of V with linear transformations as morphisms. We show that the semigroup of
normal cones in S(V ) is isomorphic to TV . There is an in-built notion of duality in the cross-connection
theory; and we observe that it coincides with the conventional algebraic duality of vector spaces. When V
is finite dimensional, we show that the normal dual N∗S(V ) of S(V ) is isomorphic to the category S(V ∗)
of proper subspaces of V ∗ where V ∗ is the algebraic dual space of V . Further we describe various cross-
connections between these categories and show that although there are many cross-connections, upto
isomorphism, we have only one semigroup arising from these categories. But if we restrict the categories
suitably, we can construct some interesting subsemigroups of the variant of the linear transformation
semigroup. This will provide an alternate way of studying the structure of TV and also shed light into
the more general theory of cross-connections.
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Célia Borlido University of Porto

The κ-word problem over pseudovarieties of the form DRH
The study of finite semigroups is strongly motivated by Eilenberg’s correspondence, which establishes a
link between varieties of rational languages and pseudovarieties of finite semigroups.
On the level of pseudovarieties, some problems arise naturally, one of them being the so-called “word
problem”. Roughly speaking, it consists in deciding whether two expressions define the same element
in every semigroup of a given pseudovariety V. Let κ denote the canonical implicit signature consisting
of two implicit operations: multiplication and (ω − 1)-power. We call κ-word any element of a free κ-
semigroup. When the expressions considered in the above mentioned decidability problem are κ-words,
then we refer to it as the “κ-word problem over V”. One of the pseudovarieties that has been shown to
be worth studying is that consisting of all R-trivial semigroups, denoted R. In particular, the κ-word
problem over R was proven to be decidable by Almeida and Zeitoun [1]. On the other hand, a natural
generalization of R is found in the pseudovarieties of the form DRH for a pseudovariety of groups H. This
class consists of all finite semigroups whose regular R-classes are groups from H. Observe that, when
H is the trivial pseudovariety, the pseudovariety DRH is nothing but R. Also, the pseudovarieties DRH
may be seen as a specialization of the pseudovariety DS, of all finite semigroups whose regular D-classes
are subsemigroups. The interest in the latter has been pointed out by Schützenberger [3] in the mid
nineteen seventies, through the characterization of the varieties of rational languages corresponding to
some subpseudovarieties of DS under Eilenberg’s correspondence, among which those of the form DRH.
Further, it is worth mentioning the case of the subpseudovariety of DS where the regular D-classes are
aperiodic subsemigroups (DA). The corresponding κ-word problem was solved by Moura [2] by adapting
the tools used in [1]. We extend the results of [1] by solving the κ-word problem over DRH whenever
it is decidable, a property that depends on H. We show that the κ-word problem over DRH may be
reduced to the analogous problem for the pseudovariety H. The converse amounts to an easy observation.
As it was already mentioned, our approach is inspired by the work of Almeida and Zeitoun [1] on the
κ-word problem over R. In order to solve it, they introduced a structure called “R-tree”. By putting
some additional data on “R-trees”, we are able to define “DRH-trees” and use them to characterize the
R-classes of the free pro-DRH semigroups. That leads to the claimed reduction of the problem to H.
References
1. J. Almeida and M. Zeitoun, An automata-theoretic approach to the word problem for ω-terms over R,
Theoret. Comput. Sci. 370 (2007), no. 1-3, 131–169.
2. A. Moura, The word problem for ω-terms over DA, Theoret. Comput. Sci. 412 (2011), no. 46,
6556–6569.
3. M. P. Schützenberger, Sur le produit de concaténation non ambigu, Semigroup Forum 13 (1976/77),
no. 1, 47–75.
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Manuel B. Branco University of Évora

On the enumeration of the set of elementary numerical semigroups with fixed multiplic-
ity, Frobenius number or genus
Let N denote the set of nonnegative integers. A numerical semigroup is a subset S of N that is closed
under addition, 0 ∈ S and N\S has finitely many elements. The cardinality of the set N\S is called
the genus of S and it is denoted by g(S). For any numerical semigroup S, the smallest positive integer
belonging to S (respectively, the greatest does not belong to S ) is called the multiplicity (respectively
Frobenius number) of S and it is denoted by m(S) (respectively F) (see [6]). We say that a numerical
semigroup S is elementary if F(S) < 2m(S).
Given a positive integer g, we denote by S(g) the set of all numerical semigroups with genus g. The
problem of determining the cardinal of S(g) has been widely treated in the literature (see for example
[1], [2], [3], [4], [5] and [7]). Some of these works are motivated by Amorós’s conjecture [3] which says the
sequence of cardinals of S(g) for g = 1, 2, · · · has a Fibonacci behavior. It is still not known in general
if for a fixed positive integer g there are more numerical semigroups with genus g + 1 than numerical
semigroups with genus g.
In this talk we give algorithms that allows to compute the set of every elementary numerical semigroups
with a given genus g, Frobenius number F and multiplicity m. As a consequence we obtain formulas
for the cardinal of these sets. In particular we show that sequence of cardinals of the set of elementary
numerical semigroups of genus g = 0, 1, . . . is a Fibonacci sequence.
[Joint work with: J.C. Rosales (Univ. Granada).]
References
1. V. Blanco, P. A. García-Sánchez and Justo Puerto, Counting numerical semigroups with short gener-
ating functions, Int. J. of Algebra and Comput. 21(7), 1217-1235, (2011).
2. M. Bras-Amorós, Bounds on the number of numerical semigroups of a given genus, J. Pure Appl.
Algebra, 213(6), 997-1001 (2008).
3. M. Bras-Amorós, Fibonacci-like behavior of the number of numerical semigroups of a given genus,
Semigroup Forum 76, 379-384 (2008).
4. S. Elizalde, Improved bounds on the number of numerical semigroups of a given genus, J. Pure Appl.
Algebra, 214(10), 1862-1873 (2010).
5. N. Kaplan, Couting numerical semigroups by genus and some cases a question of Wilf, J. Pure Appl.
Algebra, 216(5), 1016-1032 (2012).
6. J. C. Rosales, P. A. García-Sánchez, “Numerical semigroups”, Developments in Mathematics, vol.20,
Springer, New York, (2009).
7. Y. Zhao, Constructing numerical semigroups of a given genus, Semigroup Forum 80(2), 242-254 (2009).

Tara Brough University of Lisbon

Automaton semigroups: new constructions results and examples of non-automaton semi-
groups
Automaton semigroups are semigroups of endomorphisms of rooted trees generated by the actions of
Mealy automata (deterministic synchronous transducers). They act by ’self-similar’ endomorphisms, are
finitely generated, residually finite and have solvable word problem.
Until recently, only one finitely generated residually finite semigroup had been shown not to be an au-
tomaton semigroup, namely N, the free semigroup of rank 1. In this talk I will outline a proof that no
subsemigroup of N0 arises as an automaton semigroup, thus giving an infinite family of residually finite
non-automaton semigroups.
I will also give a brief overview of some new ways to build automaton semigroups from known examples,
using various standard semigroup constructions such as free products, wreath products, strong semilat-
tices and Rees matrix constructions.
[Joint work with Alan Cain (Univ. NOVA Lisboa).]
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Alan Cain Universidade NOVA de Lisboa

Combinatorics of cyclic shifts in the plactic, hypoplactic, sylvester, and related monoids
The elements of the plactic monoid can be viewed as Young tableaux, and it was proved by Lascoux &
Schützenberger in their seminal study [2] that if two of these elements contain the same number of each
generating symbol, then one can be transformed to the other by applying a sequence of cyclic shifts (that
is, where at each step one moves from an element that factors as xy to the element yx). Thus, if we build
a ‘cyclic shift graph’ whose vertices are elements of the monoid and whose edges connect elements that
differ by a cyclic shift, then each connected component consists of precisely those elements that contain
a given number of each generating symbol. Choffrut & Mercaş proved that in the plactic monoid of rank
n, the number of cyclic shifts required is at most 2n − 2 [1, Theorem 17]. That is, the diameter of a
connected component of the cyclic shift graph is at most 2n− 2 (although the number of elements they
contain is unbounded).
This talk discusses new results on the cyclic shift graphs for a family of multihomogeneous monoids
that, like the plactic monoid, are closely connected with combinatorial objects: the hypoplactic monoid
(connected with quasi-ribbon tableaux and quasi-symmetric functions), the sylvester monoid (binary
search trees), the taiga monoid (binary search trees with multiplicities), and the stalactic monoid (stalactic
tableaux). In each case, the diameter of connected components the cyclic shift graph turns out to be
dependent only on the rank of the monoid and not on the number of elements in a connected component.
The proofs exploit the combinatorial objects associated to the monoids: other multihomogeneous monoids
that have no such associated objects can have unbounded diameters of connected components.
[Joint work with António Malheiro (Centro de Matemática e Aplicações & Departamento de Matemática,
Univ. NOVA Lisboa).]
References
1. C. Choffrut & R. Mercaş. ‘The lexicographic cross-section of the plactic monoid is regular’. In
J. Karhumäki, A. Lepistö, & L. Zamboni, eds, Combinatorics on Words, no. 8079 in Lecture Notes in
Computer Science, pp. 83–94. Springer, 2013. doi: 10.1007/978-3-642-40579-2_11.
2. A. Lascoux & M.-P. Schützenberger. ‘Le monoïde plaxique’. In Noncommutative structures in algebra
and geometric combinatorics, no. 109 in Quaderni de "La Ricerca Scientifica", pp. 129–156. CNR, 1981.
http://igm.univ-mlv.fr/~berstel/Mps/Travaux/A/1981-1PlaxiqueNaples.pdf.

Alonso Castillo-Ramirez Durham University

Ranks of finite semigroups of cellular automata
Since first introduced by John von Neumann, the notion of cellular automaton has grown into a key
concept of computer science, physics and theoretical biology. For any group G and any set A, a cellular
automaton over G and A is a transformation τ : AG → AG (where AG consists of all maps x : G → A)
defined via a finite subset S of G and a local function µ : AS → A. The classical and most studied setting
is when G = Zd, d ∈ N, and A is a finite set; for example, the famous John Conway’s Game of Life is a
cellular automaton over G = Z2 and A = {0, 1}. Recent group theoretic results (see [3]) have motivated
the study of cellular automata over various groups, such as amenable and residually finite groups.
Let (G;A) be the set of all cellular automata over G and A. This is a transformation monoid on AG whose
basic semigroup theoretic properties remain unknown. We began the study of some of these properties
when G and A are both finite with |G| = n and |A| = q, so (G;A) is finite of size qq

n

. In this situation,
(G;A) turns out to be equal to all the transformations of AG that commute with the action of G on AG.
Inspired by the results and techniques used in [1], we studied the rank (i.e. the size of a smallest
generating set) of (Zn;A), where Zn is the cyclic group of size n (see [2]). We showed that this quantity
is intimately related with the divisibility graph of n. We determined the precise rank when n ∈ {2k, p, 2kp :
p is an odd prime, k ≥ 1}, and found upper and lower bounds for the general case. Some of our results
may be generalised for the study of the rank of (G;A), where G is any finite abelian group.
[Joint work with Maximilien Gadouleau (Durham University).]
References
1. Araújo, J., Bentz, W., Mitchell, J.D., Schneider, C.: The rank of the semigroup of transformations
stabilising a partition of a finite set. Mat. Proc. Camb. Phil. Soc. 159, 339–353 (2015).
2. Castillo-Ramirez, A., Gadouleau, M.: Ranks of finite semigroups of one-dimensional cellular automata,
Semigroup Forum (Online First, 2016).
3. Ceccherini-Silberstein, T., Coornaert, M.: Cellular Automata and Groups. Springer Monographs in
Mathematics, Springer-Verlag Berlin Heidelberg (2010).
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Tom Coleman University of East Anglia

Permutation monoids and MB-homogeneous structures
The study of infinite permutation groups has long been of interest to mathematicians due to its connection
to automorphism groups of first order structures. Of particular note are oligomorphic permutation groups,
which are intimately linked to ℵ0-categorical structures by the famous theorem of Ryll-Nardzewski. Ho-
mogeneous structures over a finite language provide a rich source of ℵ0-categorical structures and, corre-
spondingly, oligomorphic permutation groups; these structures are characterized by a celebrated theorem
of Fraïssé. Since then, complete classifications of homogeneous structures for differing types of relation
have been obtained: for posets (Schmerl), graphs (Lachlan and Woodrow) and digraphs (Cherlin).
Group embeddable monoids, by their nature, can be represented as a submonoid of permutations con-
tained in some symmetric group Sym(X). As every finite group embeddable monoid is a group, we
consider infinite submonoids B of the infinite symmetric group Sym(N) to avoid triviality; such a B is
an infinite permutation monoid. Natural examples of these occur via the bimorphism monoid Bi(A) of a
structure; that is, the collection of bijective endomorphisms of A. It follows that every automorphism of
A is a bimorphism of A but in general the converse is not true; and so we have that Aut(A) ⊆ Bi(A) ⊆
Sym(A), where A is the domain of A.
Recent work in this field by Cameron and Nešetřil [1] and Lockett and Truss [2] generalizes the idea
of homogeneity to several notions of homomorphism-homogeneity. One such example is the property of
MB-homogeneity : a structure A is MB-homogeneous if every monomorphism between finite substructures
of A extends to a bimorphism of A. Analagous to the three classification results above, Lockett and Truss
completely classified homomorphism-homogeneous countable posets in [2].
In this talk, connections between permutation monoids and bimorphism monoids of structures are ex-
plored in order to develop a notion of oligomorphicity for the case of infinite permutation monoids. In
addition to this, a version of Fraïssé’s theorem is shown for MB-homogeneous structures, extending work
of [1]. Finally, a collection of results is presented on MB-homogeneous graphs; these include constructing
2ℵ0 non-isomorphic examples of MB-homogeneous graphs and steps towards a classification result.
[Joint work with David Evans and Robert Gray during the course of my PhD studies at the Univ. East
Anglia.]
References
1. P. J. Cameron, J. Nešetril. Homomorphism-homogeneous relational structures, Combinatorics, Prob-
ability and Computing, 15(1-2):91-103, 2006
2. D. C Lockett, J. K. Truss. Some more notions of homomorphism-homogeneity, Discrete Mathematics,
336:69-79, 2014.

José Carlos Costa University of Minho

Reducibility of pseudovarieties of the form V ∗D
The concept of tameness of a pseudovariety was introduced by Almeida and Steinberg [2] as a tool for
proving decidability of the membership problem for semidirect products of pseudovarieties. The funda-
mental property for tameness is reducibility. This property was originally formulated in terms of graph
equation systems and latter extended to any system of equations [1,3]. It is parameterized by an implicit
signature σ (a set of implicit operations on semigroups containing the multiplication), and we speak of
σ-reducibility. For short, given an equation system Σ with rational constraints, a pseudovariety V is
σ-reducible relatively to Σ when the existence of a solution of Σ by implicit operations over V implies the
existence of a solution of Σ by σ-words over V and satisfying the same constraints. The pseudovariety
V is said to be σ-reducible if it is σ-reducible with respect to every finite graph equation system.
This talk is concerned with the κ-reducibility property of semidirect products of the form V ∗D, where
D denotes the pseudovariety of all finite semigroups in which idempotents are right zeros and κ is the
canonical signature consisting of the multiplication and the (ω − 1)-power. We show that, if the pseu-
dovariety V is κ-reducible, then V ∗D is also κ-reducible.
References
1. J. Almeida, Finite semigroups: an introduction to a unified theory of pseudovarieties, in Semigroups,
Algorithms, Automata and Languages (Coimbra, 2001), World Scientific, 2002, pp. 3–64.
2. J. Almeida and B. Steinberg, On the decidability of iterated semidirect products and applications to
complexity, Proc. London Math. Soc. 80 (2000), 50–74.
3. J. Rhodes and B. Steinberg, The q-theory of Finite Semigroups: A New Approach, (Springer Mono-
graphs in Mathematics, 2009).
[This talk is based on joint work with Conceição Nogueira and M. Lurdes Teixeira.]
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Silke Czarnetzki University of Tuebingen

Logic classes beyond the regular languages described by duality
The study of finite monoids unveiled a rich amount of deep theories that connect over areas from different
fields of mathematics.
The well-established connections between pseudovarieties of (finite) monoids, profinite monoids, pseu-
doidentities and semidirect products seem to form a sound basis for a generalisation of these notions
beyond the borders of finiteness. One foundation for a generalisation is laid by the duality established
by Stone, of Boolean algebras and topological spaces - so-called Stone spaces. Almeida as well as Pip-
penger stated that profinite monoids form special instances of Stone spaces. A more recent development
by Gehrke, Griegorieff and Pin shows the existence of an extension of pseudoidentities to general Stone
spaces. While in the case of profinite monoids, general results are known on how to obtain concrete
pseudoidentities, in the case of arbitrary Stone spaces, we lack analogue results.
In an effort to obtain an intuition on how to derive similar notions to obtain identities for the general
case, we investigated in Boolean algebras definable by fragments of logic and managed to obtain a sound
and complete set of identities for it’s Stone Space. These fragments use non-regular predicates, which
place them beyond the border of profinite monoids. The used techniques are heavily influenced by the
theories developed for pseudoidentities, in which semidirect products play a key role.

Volker Diekert University of Stuttgart

Local Rees extensions
The talk is based on a joint work with Tobias Walter1. It is about finite monoids; and the term variety
is a shorthand for the more accurate notation pseudovariety.
Jorge Almeida and Ondřej Klíma defined the bullet operation Rees(U,V) as the least variety of monoids
containing all Rees extensions Rees(N,L, ρ) for N ∈ U and L ∈ V; and they called a variety V to be
bullet idempotent if V = Rees(V,V). Their corresponding paper “On the irreducibility of pseudovarieties
of semigroups” appeared 2016. One of their results is that H is bullet idempotent. Here H is any variety
of finite groups and H denotes the variety of finite monoids where all subgroups belong to H.
Independently, Tobias Walter and the speaker introduced the notion of local Rees extension Rees(N,L, ρ)
of a monoid M , by the restriction that N is a proper submonoid of M , L is a proper local divisor of M ,
and M itself is a divisor of Rees(N,L, ρ). In particular, both N and L are smaller than M . This makes
the construction useful for induction. The algebraic result for the bullet operation is as follows. LetM be
a finite monoid. Then M appears as a divisor of a monoid which is obtained by starting with subgroups
of M and applying finitely many steps of local Rees extensions. As a consequence, if H is any variety
of finite groups, then the smallest bullet idempotent variety containing H is H. Phrased differently, the
bullet idempotent varieties are exactly the varieties of the form H. Thus, a property P holds for all
monoids in H if and only if the following two assertions are true.

• Property P holds for all groups in H.
• If P holds for N and L where N is a proper submonoid and L is a proper local divisor of some
M ∈ H, then P holds in every divisor of Rees(N,L, ρ).

1Supported by the German Research Foundation (DFG) under grant DI 435/6-1.
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Ruy Exel Universidade Federal Santa Catarina

Partial actions and subshifts of infinite type
A subshift on a finite alphabet Λ is a subset X ⊆ ΛN which is closed in the product topology and invariant
under the left shift. A well known result in Symbolic Dynamics asserts that every such X is necessarily
given by the set of all infinite words which do not contain any subword of a given set F of prohibited
words. When X may be described by a finite set of prohibited words, one says that X is a shift of finite
type. Regarding dynamical properties, shifts of finite type are much better behaved that those of infinite
type.
In this talk we will center our attention on OX , a certain algebra of bounded operators on Hilbert’s space
associated to a given subshift X. These algebras were first introduced and studied by Matsumoto, with
later important contributions by Carlesen.
When X is s subshift of finite type, OX turns out to be the well known and extensively studied Cuntz-
Krieger algebra, but in general the study of OX presents some very challenging obstacles.
Our approach to the understanding of OX will be based on the theory of partial group actions and in
particular we will show how to describe OX as the crossed product of a commutative algebra by a natural
partial action of the free group.
[This talk is based on joint work with M. Dokuchaev.]

Victoria Gould University of York

Partial semigroups: categories and constellations
We say that a pair (P, ·) is a partial semigroup if there is a partial map P × P → P such that whenever
(xy)z and x(yz) are both defined, then (xy)z = x(yz).
Partial semigroups (of various special kinds) have played a significant role in semigroup theory. Biordered
sets provide a notable example, where here the domain is determined by a pair of quasi-orders. The partial
semigroups we consider here are those underlying (small) categories, and constellations; again, ordering
plays a part, allowing us to extend the partial operation to a global one under certain conditions. Perhaps
the best known result of this kind is the Ehresmann-Schein-Nambooripad (ESN) Theorem [4] which shows
how to construct an inverse semigroup from a special kind of category called an inductive groupoid and
moreover, that the category of inverse semigroups is equivalent to the category of inductive groupoids.
Left restriction semigroups are a variety of unary semigroups, modelling the notion of a semigroup of
partial maps closed under taking identity maps at domains, and including the class of inverse semigroups.
Constellations were introduced by Gould and Hollings [2], who used so-called inductive constellations to
describe left restriction semigroups, thus providing a one-sided version of the ESN Theorem and its ex-
tensions.
We observe that left restriction semigroups are a very special case of the D-semigroups introduced by
Stokes [5]. Within the framework provided by D-semigroups we can define not only left restriction semi-
groups, but other classes of current interest such as left Ehresmann, left adequate, -unipotent semigroups
and their non-regular analogues. Many of these have been studied by Gomes, most recently in [1]: all
have left regular band of idempotents.
We survey some extensions of the ESN Theorem and the above result of [2]. We show how, rather
surprisingly, ‘forgetting’ the inductive structure on a constellation allows us to obtain some connections
with categories, cementing the idea that a constellation is a one-sided category. Finally we describe some
recent work of Stokes [6] that shows how constellations may be used to capture D-semigroups, including
those of [1].
References
1. M. Branco, G. Gomes and V. Gould, ‘Extensions and covers for semigroups whose idempotents form
a left regular band’, Semigroup Forum 81 (2010), 51–70.
2. V. Gould and C. Hollings, ‘Restriction semigroups and inductive constellations’, Comm. Algebra 38
(2010), 261–287.
3. V. Gould and T. Stokes, ‘Constellations and their relationship with categories’, Algebra Universalis,
to appear; arXiv:1510.05809.
4. M.V. Lawson, Inverse Semigroups: The Theory of Partial Symmetries, World Scientific, 1998.
5. T. Stokes, ‘Domain and range operations in semigroups and rings’, Comm. Algebra 43 (2015), 3979–
4007.
6. T. Stokes, ‘D-semigroups and constellations’, preprint.
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Robert Gray University of East Anglia

Crystal monoids and crystal bases
The Plactic monoid is a fundamental algebraic object which captures a natural monoid structure carried
by the set of semistandard Young tableaux. It arose originally in the work of Schensted (1961) on
algorithms for finding the maximal length of a nondecreasing subsequence of a given word over the
ordered alphabet An = {1 < 2 < ... < n}. The output of Schensted’s algorithm is a tableau and, by
identifying pairs of words that lead to the same tableau, one obtains the Plactic monoid Pl(An) of rank
n. Alternatively, the Plactic monoid may be defined by a finite presentation with generating symbols
An and a certain finite set of defining relations which were originally determined in work of Knuth
(1970). A third way of obtaining this monoid comes from Kashiwara’s theory of crystal bases. The
notion of the quantised enveloping algebra, or quantum group, Uq(g) associated with a symmetrisable
Kac–Moody Lie algebra g was discovered independently by Drinfeld (1985) and Jimbo (1985) while
studying solutions of quantum Yang–Baxter equations. Kashiwara introduced crystals in order to give a
combinatorial description of modules over Uq(g) when q tends to zero. Crystals are useful combinatorial
tools for studying representations of these algebras. The vertices of any Kashiwara crystal graph carry a
natural monoid structure given by identifying words labelling vertices that appear in the same position
of isomorphic components of the crystal. In the special case of Kashiwara crystals of type An the monoid
that arises from this construction turns out to be the Plactic monoid Pl(An). In this talk I will present
some recent joint work with A. J. Cain and A. Malheiro investigating monoids that arise from Kashiwara
crystals in this way. In particular I will discuss the problem of constructing complete rewriting systems,
and finding biautomatic structures, for crystal monoids.

Vladimir V. Gusev Université catholique de Louvain and Ural Federal University

On the interplay between Babai and Černý’s conjectures
There are combinatorial problems in group and semigroup theory that can be simply stated, but never-
theless extremely difficult to solve. We focus on two of them, namely, the Babai conjecture and the Černý
conjecture. The former (in the special case of Sn) states that there exists a polynomial f(n) such that for
any set of generators G of the full permutation group Sn every permutation from Sn can be represented
as a product of at most f(n) elements of G. The latter is a statement about synchronizing automata.
An automaton A is called synchronizing if there exist a word w and a state f such that the action of w
brings all states to f . Any such word is called synchronizing and the length of the shortest synchronizing
word is the reset threshold of A. The Černý conjecture states that the reset threshold of an n-state
automaton is at most (n− 1)2.
We introduce a hybrid Babai-Černý problem: what are the tight bounds on the reset thresholds of n-state
automata with the transition monoid equal to the full transformation semigroup Tn? We present a series
of such automata with the reset threshold equal to n(n−1)

2 . Motivated by our problem we also study 2-
transitive automata: for all pairs of states (p1, q1) and (p2, q2) there exists a word w such that p1 ·w = p2

and q1 · w = q2.
We construct a series of 2-transitive automata such that for every automaton in the series there exist two
pairs of states with the following property: the shortest word that brings one pair to another one has
length at least n2

4 + o(n2).
[Joint work with François Gonze, Balázs Gerencsér, Mikhail V. Volkov and Raphaël M. Jungers (Univ.
catholique de Louvain, Alfréd Rényi Institute of Mathematics, and Ural Federal Univ.).]
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Karsten Henckell New College of Florida

Decidability of complexity via pointlike sets: A premodern, elementary and construc-
tive approach
Personal Note:
My aim in this talk is to demonstrate the promise of the "cover-refinement" approach to the complexity
problem. I have been working on complexity for over 40 years, and a solution using the "cover-refinement"
approach seems to be within reach...yet it has also become clear to me, that without help I will not be able
to publish these results. I am therefore extending an open invitation to collaborate (and to co-author)
to anyone interested in this approach.
I think the value of results 1 and 2 (A- refinement) basically is tied to the solution of the G-refinement
problem (conjectures 3 and 4).
"pre-modern" ,"hyper-elementary"and "explicitly constructive" are not technical terms and allude more
to my taste in mathematical tools, and to my desire to give explicit constructions whenever possible.
Some definitions: A = (pseudovariety of finite) aperiodic semigroups, G = (pseudovariety of finite)
groups, Vn = (A ∗G)n ∗A, P (S) = the power set of S, [S] = {{s} | s ∈ S},

⋃
: P 2(S) → P (S) is the

union - map, Z(g) = the cyclic group generated by (a group element) g, c(S) = minimal n such that
S ∈ Vn = complexity of S,
PlV(S) = {X ∈ S | for all relations R : S → V with V ∈ V there exists a v ∈ V such that X ⊆ R−1(v)}.
PlV(S)) is called “the V - pointlike sets of S”. Then an alternate characterization of c(S) is c′(S) = the
minimal n such that PlVn(S) = [S].
Given a relation R : S → T , define C(R) = {R−1(t) | t ∈ T} , closed under products and subsets
C(R) is called “the cover-semigroup presented by R” ; we also say “R computes C(R)”. If T ∈ V we say
“C(R) is V - presentable” or “C(R) is V - presented” (depending on if we assert the existence of an R,
or actually exhibit R). It is well known that PlV(S) is V - presentable. Our goal (the "cover-refinement
approach to complexity") is to determine (recursively) PlW∗V(S) [for all S], given complete information
about PlV(S) [for all S]. Ideally, we would accomplish this constructively, i.e. determine a W ∗V -
presentation for PlW∗V(S) (based on V - presentations for PlV(S′) [for various S′]).
This ambitious program (the "cover-refinement approach to complexity") has mostly been worked out
for the aperiodic case W = A, while the group case W = G is still under investigation.
Part I: the aperiodic case W = A:
Basic A -construction Lemma: Let g ∈ PlA∗V(S) be a group element, and let Z(g) ∈ PlV(PlA∗V(S)),
then

⋃
Z(g) ∈ PlA∗V(S) (Note that we need information of PlV at PlA∗V(S) ... !).

Define CA(S) = the smallest cover-semigroup C such that [S] ≤ C ≤ P (S) and C is closed under
(*) if g ∈ C is a group element with Z(g) ∈ PlV(C), then

⋃
Z(g) ∈ C.

The Basic A -construction Lemma then insures that
Theorem 1: CA(S) ≤ PlA∗V(S)
For the opposite direction we adapt our proof (for V = 1 ) in “Product expansions” (JPAA 101 (1995)
pp 157-170) to the general case:
Theorem 2: PlA∗V(S) ≤ CA(S) (constructively) Note that we actually construct a presentation of CA(S)
from V - presentations [of various S′]
Part II: the group case W = G:
This is under active investigation. We have a construction CG(S) and we conjecture:
Conjecture 3: CG(S) ≤ PlG∗V(S) and
Conjecture 4: PlA∗G∗A∗V(S) ≤ CG(S) (constructively)
Even though Conjecture 4 is weaker than desired, it is still strong enough to get
Conjecture 5: c(S) is decidable (constructively)
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Tatiana Jajcayová Comenius University, Bratislava

Regular actions of groups and inverse semigroups on combinatorial structures
Every finite group is known to be isomorphic to the automorphism group of some finite graph. This is
not the case for specific group actions. In our talk, we address this problem with regard to the most
natural group action: the regular action of a group G on itself via multiplication.
We will discuss various combinatorial structures whose full automorphism groups act regularly on their
sets of vertices. Equivalently, we attempt to classify finite groups G which admit the introduction of
a combinatorial structure on G whose full automorphism group consists solely of the automorphisms
induced by the action of the multiplication of G on itself. Such structures can be thought of as combina-
torial representations of the corresponding groups.
Previous results on this topic include the classification of graphical regular representations (graphs with
regular automorphism groups), classification of digraphical regular representations (directed graphs with
regular automorphism groups), as well as the classification of general combinatorial structures (incidence
structures) with regular automorphism groups. We generalize these results to the class of k-hypergraphs
which are incidence structures with all blocks of size k, and consider the spectrum of all k’s for which
such representation is possible.
The inverse semigroup of partial automorphisms of a combinatorial structure is a richer and more com-
plicated object that contains more information about the structure than its automorphism group. We
propose to study analogous questions to those concerning automorphism groups discussed above for the
inverse semigroups of partial automorphisms. The development of such theory has applications in areas
of combinatorics that deal with regular objects which are not vertex-transitive.

Mark Kambites University of Manchester

Combinatorial and geometric amenability-type conditions for semigroups
Within the general theory of amenability (which exists for groups, semigroups and Banach algebras) there
is a distinct strand of research focussing on finitely generated groups. The development of a corresponding
theory for finitely generated semigroups has been hampered by the lack of an elementary combinatorial
description comparable with the Følner conditions which characterise amenability in groups. I will discuss
some joint research with Robert Gray, on the relationship between amenability, Følner-type conditions
and random walks on Cayley graphs of finitely generated semigroups.

Łukasz Kubat University of Warsaw

Irreducible representations of Chinese monoids
In this talk I will focus on recently obtained results concerning classification of irreducible representations
of the Chinese monoid Cn, of any finite rank n, over a field K. It turns out that in case the base field
K is uncountable and algebraically closed, all irreducible representations of Cn have a remarkably simple
form and they can be built inductively from irreducible representations of the monoid C2, which are
closely related to irreducible representations of the bicyclic monoid. The proof shows also that every
such representation of Cn is monomial. Since, as it is already known, Cn embeds into the algebra
K[Cn]/J(K[Cn]), where J(K[Cn]) denotes the Jacobson radical of the monoid algebra K[Cn], a new
representation of Cn as a subdirect product of the images of Cn in the endomorphism algebras of the
constructed simple modules follows.
[Joint work with Jan Okniński.]
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Ganna Kudryavtseva University of Ljubljana

Stone-type dualities for restriction semigroups
The purpose of this talk is to discuss dualities between some classes of restriction semigroups and re-
spective classes of étale categories (localic or topological). This generalizes dualities between classes of
inverse semigroups and respective classes of étale groupoids established earlier by Lawson and Lenz in [2]
(topological setting, objects and morphisms) and by Resende in [3] (localic setting, at the level of ob-
jects). An important role in our constructions is played by restriction quantal frames, which generalize
Resende’s inverse quantal frames and capture the multiplicative structure of the frame of opens of the
locale C1 of an étale localic category (C1, C0).
Morphisms between étale categories (and between étale groupoids, as a special case) are defined, in the
localic setting, simply as the corresponding morphisms of restriction quantal frames, but going in the
opposite direction (similarly to the definition of locale maps). In general, these are not frame maps, so
that they do not give rise to functors between localic categories. Nevertheless, they can be thought about
as some abstract ‘relational morphisms’, and their image under the spectrum functor to étale topological
categories admits a precise description in terms of relational morphisms. Meet preserving morphisms,
however, do give rise to functors between localic categories, and are mapped to continuous covering func-
tors when passing to spectrum étale topological categories.
The talk is based on the preprint [1].
References
1. G. Kudryavtseva, M. V. Lawson, On non-commutative frame theory, preprint, arXiv1404.6516.
2. M. V. Lawson, D. H. Lenz, Pseudogroups and their étale groupoids, Adv. Math. 244 (2013), 117–170.
3. P. Resende, Étale groupoids and their quantales, Adv. Math. 208 (2007), 147–209.

Mark Lawson Heriot-Watt University

New directions in inverse semigroup theory
It is well-known that inverse semigroups were introduced to provide an algebraic setting for the theory
of pseudogroups of transformations. Such pseudgroups played, and continue to play, an important role
in defining non-classical geometrical structures and, in addition, also arise in many areas of mathematics
such as in group theory. Despite these common roots, inverse semigroup theory and the the theory of
pseudogroups of transformations largely went their separate ways. But over the past few years there
has been a rapprochement. The aim of my talk is to explain the nature of that rapprochement and to
describe the new research that it has inspired.
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Markus Lohrey University of Siegen

Circuit Evaluation for Finite Semirings
Circuit evaluation problems are among the most well-studied computational problems in complexity
theory. In its most general formulation, one has an algebraic structure A = (A, f1, . . . , fk), where the fi
are mappings fi : Ani → A. A circuit over the structure A is a directed acyclic graph (dag) where every
inner node is labelled with one of the operations fi and has exactly ni incoming edges that are linearly
ordered. The leaf nodes of the dag are labelled with elements of A (for this, one needs a suitable finite
representation of elements from A), and there is a distinguished output node. The task is to evaluate this
dag in the natural way, and to return the value of the output node. If the structure A is finite, then its
circuit evaluation problem can be easily solved in polynomial time, i.e., belongs to the complexity class
P. This makes it interesting to characterize the computational complexity of a circuit evaluation problem
with respect to the following two complexity classes:

• P-complete problems, i.e. problems A ∈ P for which every problem in P can be reduced to A
(usually, the reduction is assumed to be logspace computable).
• NC, which is the class of all problems that can be solved in polylogarithmic time with polyno-

mially many processors.
Whereas P-complete problem can be viewed as inherently sequential problems, NC can be viewed as the
class of problems that can be efficiently parallelized. Whereas it is clear that NC ⊆ P, it is a famous open
problem in complexity theory, whether this inclusion is strict.
In a paper from 1997, Beaudry, McKenzie, Péladeau, and Thérien studied the circuit evaluation problem
for semigroups. They proved the following dichotomy result: If the finite semigroup is solvable (meaning
that every subgroup is a solvable group), then circuit evaluation is in NC, otherwise circuit evaluation is
P-complete.
In this talk, we will extend the above dichotomy from semigroups to semirings. In a seminal paper from
1975, Ladner proved that the circuit evaluation problem for the Boolean semiring B2 = ({0, 1},∨,∧) is
P-complete. This result marks a cornerstone in the theory of P-completeness. On first sight, it seems
that Ladner’s result excludes efficient parallel algorithms: One can use it to show that every finite
semiring with an additive identity 0 and a multiplicative identity 1 6= 0 (where 0 is not necessarily
absorbing with respect to multiplication) has a P-complete circuit evaluation problem. Therefore, we
take the most general reasonable definition of semirings: A semiring is a structure (R,+, ·), where (R,+)
is a commutative semigroup, (R, ·) is a semigroup, and · distributes (on the left and right) over +. In
particular, we neither require the existence of a 0 nor a 1. Our main result states that in this general setting
there are only two obstacles to efficient parallel circuit evaluation: non-solvability of the multiplicative
structure and the existence of a 0 and a 1 6= 0 in a subsemiring. More precisely, we show the following
result: (i) For every finite semiring R = (R,+, ·), the circuit evaluation problem is in NC if (R, ·) is
solvable and R contains no subsemiring with an additive zero 0 and a multiplicative 1 6= 0. (ii) Moreover,
if one of these conditions fails, then circuit evaluation is P-complete.
The hard part of the proof is to show (i). For this, we first consider the case that the semiring has a 1.
For the general case, we reduce the size of the multiplicative subsemigroup generated by the input values
of the circuit in one phase, and iterate this process. During this process, we use the previously solved
case of circuit evaluation over semirings with a 1 as an oracle.
[Joint work with Moses Ganardi, Danny Hucke, and Daniel König.]
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Stuart Margolis Bar-Ilan University

On the Topology of Boolean Representable Simplicial Complexes
In a series of papers Izhakian and Rhodes introduced the concept of Boolean representation for various al-
gebraic and combinatorial structures. These ideas were inspired by previous work by Izhakian and Rowen
on supertropical matrices and were subsequently developed by Rhodes and Silva in a recent monograph,
devoted to Boolean representable simplicial complexes (BRSCs).
The original approach was to consider Booloean matrix representations over the Superboolean semiring
SB, using appropriate notions of vector independence and rank. Writing N = {0, 1, 2, ...}, we can define
SB as the quotient of (N,+, ., 0, 1) (usual operations) by the congruence that identifies all integers greater
or equal to 2. In this context, Boolean representation refers to matrices using only 0 and 1 as entries.
Another approach to Boolean representable simplicial complexes is by means of lattice representations. A
simplicial complex is Boolean representable if and only if it equals the set of transversals of the successive
differences for chains in some lattice. Precise definitions will be given in John Rhodes’s talk.
This talk is devoted to the topology of Boolean representable simplicial complexes. As any finitely
presented group can be the fundamental group of a 2-dimensional simplicial complex, the problem of
understanding the homotopy type of an arbitrary simplicial complex is hopeless. However, for matroids,
the topology is very restricted. Indeed, it is known that a matroid is shellable. This implies that a
matroid is homotopy equivalent to a wedge of spheres whose dimension is that of the matroid and rank
is a function of its unique non-trivial homology group. In particular, a matroid of dimension at least 2
has a trivial fundamental group.
One of the main results of this talk is to show that the fundamental group of a Boolean representable
simplicial complex is a free group. We give a precise formula for the rank of this group in terms of the
number and nature of the connected components of its graph of flats.
For 2 dimensional BRSCs, we completely characterize the shellable complexes, showing that these are pre-
cisely the sequentially Cohen-Macauley complexes. Although not every 2 dimensional BRSC is shellable,
we prove that every 2 dimensional BRSC has the homotopy type of a wedge of 1-spheres and 2-spheres.
We consider the connection to EL-labelings of the lattice of flats and give an example of a shellable
2-dimensional complex whose lattice of flats is not EL-labelable .
[Joint work with John Rhodes and Pedro V. Silva (Univ. California, Berkeley and CMUP, Univ. Porto).]

Francesco Matucci University of Campinas

Decision problems and subgroups in higher dimensional Thompson groups
Higher dimensional Thompson groups nV , first introduced by Matt Brin, are groups of homeomorphisms
of powers of the Cantor set. Their description is similar to those of the classical Thompson groups F, T, V
but elements present substantial differences, such as having chaotic dynamics. This leads to the existence
of undecidable decision problems and makes it harder to work within this group.
In this talk we describe recent results in understanding the dynamics of elements and why it is hard to
understand it in most cases and we show that they contain the wide class of right-angled Artin groups as
subgroups (which contains, for example, surface groups), leading to further information about decision
problems in these groups and recovering another proof that right-angled Artin groups can be realized
using asynchronous automata.
[Parts of this work are joint with James Belk, Collin Bleak, Conchita Martinez-Perez and Brita Nucinkis.]
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Volodymyr Mazorchuk Uppsala University

Fiat categorification of ISn and F ∗n
Ordered monoids (in particular, inverse monoids with respect to the natural order) provide natural
examples of 2-categories. However, the asymmetric nature of the partial order usually does not allow one
define on such a 2-category any reasonable involution.
In this talk we will show how, starting from the symmetric group Sn, one can construct two 2-categories
with involution, the so-called fiat 2-categories. One of them can be viewed as the fiat “extension” of the
natural 2-category associated with the symmetric inverse semigroup considered as an ordered semigroup
with respect to the natural order. This provides a fiat categorification for the integral semigroup algebra
of the symmetric inverse semigroup with respect to the Möbius basis. The other 2-category can be viewed
as the fiat “extension” of the 2-category associated with the maximal factorizable subsemigroup of the
dual symmetric inverse semigroup (again, considered as an ordered semigroup with respect to the natural
order). This 2-category provides a fiat categorification for the integral semigroup algebra of the maximal
factorizable subsemigroup of the dual symmetric inverse semigroup.
[This is a report on a joint work with Paul Martin (University of Leeds).]

Arkadiusz Mecel University of Warsaw

The semigroup of conjugacy classes of left ideals of a finite dimensional algebra
Let A be a finite dimensional unital algebra over a field K. Following [3], I will denote by C(A) the
semigroup of conjugacy classes of left ideals of A, equipped with a binary operation induced by the
multiplication in A. The general aim is to relate the structure of C(A) with the properties of A. This is
a joint work with J. Okniński.
One of the open problems is the description of algebras A with finite C(A). It is strongly related to the
classical problem of characterizing the class of algebras of finite representation type [1], [3], especially
with the assumption that the base field is algebraically closed. I will present its actual state of progress,
especially for the class of radical square zero algebras.
In case when C(A) is finite, certain structural invariants of the algebra A, such as the Gabriel quiver,
or the isomorphism class of the algebra A/J(A), can be recovered. This leads to a natural isomorphism
problem of characterizing such algebras A, that are determined by C(A), up to isomorphism [2]. Recently
obtained examples of such classes will be presented.
References
1. Mȩcel A., On the finiteness of the semigroup of conjugacy classes of left ideals for algebras with radical
square zero, Coll. Math. 142 (2016), 1–49.
2. Mȩcel A., Okniński J., Conjugacy classes of left ideals of a finite dimensional algebra, Publ. Mat. 57
(2013), 477–496.
3. Okniński J., Renner L., Algebras with finitely many orbits, J. Algebra 264 (2003), 479–495.
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Andrea Montoli University of Coimbra

The push forward construction and the Baer sum of special Schreier extensions of
monoids
The aim for this talk is to describe a Baer sum construction for special Schreier extensions of monoids
with abelian kernel. A fundamental tool for this construction is the validity of relative versions of the
classical homological lemmas for these extensions, such as the Short Five Lemma [1] and the Nine Lemma
[3].
A special Schreier extension f : A→ B of monoids, with abelian kernel X, determines a monoid action of
B on X. This fact allows to make a partition of the set SchExt(B,X) of special Schreier extensions of the
monoid B by the abelian group X into subsets of the form SchExt(B,X,ϕ) of special Schreier extensions
inducing the same action ϕ : B → End(X), in analogy with what happens for group extensions.
We first give a description of Baer sums in terms of factor sets [2]: we show that special Schreier extensions
with abelian kernel correspond to equivalence classes of factor sets, as it happens for groups. Pointwise
multiplication of factor sets induces then an abelian group structure on any set SchExt(B,X,ϕ).
Secondly, we introduce a push forward construction for special Schreier extensions with abelian kernel
[3]. This construction allows us to give an alternative, functorial description of the Baer sum, opening
the way to an interpretation of cohomology of monoids in terms of extensions.
[Joint work with Nelson Martins Ferreira and Manuela Sobral.]
References
1. D. Bourn, N. Martins-Ferreira, A. Montoli, M. Sobral, Schreier split epimorphisms in monoids and in
semirings, Textos de Matemática (Série B), Departamento de Matemática da Universidade de Coimbra,
vol. 45 (2013).
2. N. Martins-Ferreira, A. Montoli, M. Sobral, Baer sums of special Schreier extensions of monoids,
Semigroup Forum, published online.
3. N. Martins-Ferreira, A. Montoli, M. Sobral, The Nine Lemma and the push forward construction for
special Schreier extensions of monoids, submitted, preprint DMUC 16–17.

Vicente Pérez-Calabuig University of València

The soluble kernel of a finite semigroup is computable
The problem of computing kernels of finite semigroups goes back to the early seventies and became
popular among semigroup theorists through the Rhodes Type II conjecture which proposed an algorithm
to compute the kernel of a finite semigroup with respect to the class of all finite groups. Proofs of this
conjecture were given in independent and deep works by Ash and Ribes and Zalesskǐı, and the results of
these authors that led to its proof have been extended in several directions.
Once Rhodes conjecture has been solved, a natural question arising is whether or not the kernel associated
to a variety F of finite groups is computable. The special case when F is the variety of soluble groups is
of great importance. The computability of the soluble kernel implies the computability of the pro-soluble
closure of a finite rank subgroup, and as Coulbois, Sapir and Weil claimed in 2003, “the solution of this
difficult open question would have interesting consequences in finite monoid theory and in computational
complexity”.
The main aim of this talk is to solve this open question by proving that the soluble kernel of a finite
semigroup is computable. Our proof depends heavily on a reduction theorem obtained by us in an earlier
paper which shows that the description of the regular elements in the F-kernel of a semigroup can be
resolved by examining the members of a very concrete class of inverse semigroups.
[Joint work with Adolfo Ballester-Bolinches (Univ. València).]
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Jean-Eric Pin CNRS/University Paris-Diderot

Stabilisation monoids and cost functions
Regular cost functions were introduced by Colcombet as a quantitative generalisation of regular languages,
retaining many of their equivalent characterisations and decidability properties. For instance, stabilisation
monoids play the same role for cost functions as monoids do for regular languages. A stabilisation monoid
as an ordered monoidM together with a stabilisation operator ] : E(M)→ E(M) satisfying the following
properties:
(S1) for all s, t ∈M such that st ∈ E(M) and ts ∈ E(M), one has (st)]s = s(ts)],
(S2) for all e ∈ E(M), one has (e])] = e]e = ee] = e] 6 e,
(S3) for all e, f ∈ E(M), e 6 f implies e] 6 f ],
(S4) 1] = 1.

In this lecture, I will first review the main results of this theory. For instance, the standard equivalences
on regular languages

regular languages ⇐⇒ finite automata ⇐⇒ finite monoids ⇐⇒ monadic second order logic
admit the following nontrivial extension

regular cost functions ⇐⇒ cost automata ⇐⇒ stabilisation monoids ⇐⇒ cost monadic logic
I will also present two recent results of Daviaud, Kuperberg and the author that extend to cost functions
Eilenberg’s varieties theorem and profinite equational characterisations of lattices of regular languages.

Libor Polák Masaryk University of Brno

Graph type conditions on automata determining varieties of languages
• Let f : B∗ → A∗ be a morphism, We say that the semiautomaton (no initial nor final states) (P,B, ◦)
is an f -subautomaton of (Q,A, ·) if P ⊆ Q and q ◦ b = q · f(b) for every q ∈ P , b ∈ B.
A variety of semiautomata V associates to every finite alphabet A a class V(A) of semiautomata over
alphabet A in such a way that
• V(A) 6= ∅ is closed under disjoint unions, finite direct products and morphic images,
• V is closed under f -subautomata.
For each variety of semiautomata V, we denote by α(V) the class of regular languages given by

(α(V))(A) = {L ⊆ A∗ | ∃A = (Q,A, ·, i, F ) : L = LA and (Q,A, ·) ∈ V(A)} .
[Ésik and Ito, Chaubard, Pin and Straubing] The mapping α is an isomorphism of the lattice of all
varieties of semiautomata onto the lattice of all varieties of regular languages. But how to present
varieties of semiautomata? One of several possibilities follows.
Concrete examples of Forbidden Patterns characterizations
• In [J.-E. Pin ’92] the author proves a characterization for reversible languages.
• In [J. Cohen, D. Perrin and J.-E. Pin ’93] such characterizations of the syntactic semigroup being
R-trivial, locally R-trivial, L-trivial, and locally L-trivial are given.
• In [J.-E. Pin, P. Weil ’97] the authors succeeded to characterize the cases the classes 1/2 and 3/2 of
the Straubing-Thérien hierarchy, 1/2 of the dot-depth hierarchy and the level 1 of the group hierarchy.
• In [Sz. Iván, J. Nagy-Gyorgy ’14] the authors deal with finite and cofinite, definite, reverse definite and
generalized definite languages. (Some of the results were proved elsewhere.)
• In [J.-E. Pin, the book ’16] the author deals with slender and sparse languages.
As usual, one tests the conditions in the minimal complete DFA for a given language. We will present
quite general theory of Forbidden Patterns for characterizations of classes of languages.
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Tom Quinn-Gregson University of York

Homogeneous bands
The concept of homogeneity of relational structures has connections to model theory, permutation groups
and combinatorics. A number of complete classifications of homogeneous structures have been obtained,
including those for graphs, semilattices and posets. We may naturally extend the definition of homogene-
ity to algebras, by defining an algebra to be homogeneous if every isomorphism between finitely generated
sub-substructures extends to an automorphism. The key to this extension is that connections with model
theoretic properties such as Quantifier Elimination and ω-categoricity remain.
A band is a semigroup in which every element is an idempotent, that is, if a ∈ S then a2 = a. Every
band is equipped with a partial order, given by e ≤ f if and only if ef = fe = e. In this talk I will
discuss when the homogeneity of a band passes to the poset it induces, and give a complete classification
in this case.

Teresa M. Quinteiro Inst. Sup. Eng. Lisboa

Bilateral decompositions of some monoids of transformations
Let S and T be two semigroups. Let

δ : T −→ T (S)
u 7−→ δu : S −→ S

s 7−→ u · s
and

ϕ : S → T (T )
s 7−→ ϕs : T −→ T

u 7−→ us

be an anti-homomorphism of semigroups and a homomorphism of semigroups, respectively, such that
: (SPR) (uv)s = uv·svs, for s ∈ S and u, v ∈ T (Sequential Processing Rule) and
: (SCR) u · (sr) = (u · s)(us · r), for s, r ∈ S and u ∈ T (Serial Composition Rule).
Within these conditions, the set S × T is a semigroup with respect to the multiplication (s, u)(r, v) =
(s(u · r), urv), for s, r ∈ S and u, v ∈ T . We denote this semigroup by ST and call it the (Kunze) bilateral
semidirect product of S and T (associated with δ and ϕ). If S and T are monoids and δ and ϕ are
monoidal (i.e. u · 1 = 1, for u ∈ T , and 1s = 1, for s ∈ S) and preserve the identity, then ST is a monoid
with identity (1, 1).
This notion was introduced and studied by Kunze and was strongly motivated by automata theoretic
ideas.
In this talk we will present decompositions of several monoids of transformations by means of bilateral
semidirect products and quocients.
[Joint work with Vítor Hugo Fernandes (Univ. NOVA Lisboa).]

Arangathu R. Rajan University of Kerala

Categories determined by inverse semigroups
Several categories arise in the structure theory of inverse semigroups and also of regular semigroups. For
example the well known structure theorem of Schein for inverse semigroups is based on the inductive
groupoid associated with the inverse semigroup. Here a groupoid is a category in which all morphisms
are isomorphisms. Several other categories associated with inverse semigroups can be seen in literature,
for example in the works of J.E. Pin and Stuart Margolis, MV Lawson, AR Rajan etc.
One category of interest in arising in the study of structure of regular semigroups is the category of
principal left [right] ideals of the semigroup introduced by K.S.S. Nambooripad. These categories have
been abstractly characterised as normal categories. These are categories in which the objects are principal
left [right] ideals of a regular semigroup and morphisms are certain right[ resp. left] translations. Normal
categories are the basic categories considered in the cross connection theory of regular semigroups, which
is a generalization of Grillet’s cross connection. One interesting question associated with study of normal
categories is determination of normal categories arising from various classes of regular semigroups. We
consider this question for certain classes of inverse semigroups and describe the special properties of the
corresponding normal categories.
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Carlos Ramos University of Évora

Recombination algebraic structure for Cellular Automata
We define and study an algebraic structure arising from recombination processes for Cellular automata.
Cellular automata are discrete dynamical systems, with Zn as local state space, and each cellular au-
tomaton is characterized by a finite sequence of elements in Zn, determining the time evolution rule. This
sequence is seen as the genotype of the cellular automata. Therefore, the space of cellular automata of n
local states can be seen as the set of finite sequences, of certain size m, in Zn, that is Zmn . Recombination
in cellular automata is a process analogue to the occurring in the DNA of living beings through the repro-
duction process. We have defined in [1] a suitable binary operation which produces the recombination of
two finite sequences. This operation, ◦α, is parametrized by real number α in the unit interval. Therefore,
fixed n and m, we obtain a one parameter family of algebraic structures, with set Zmn and operation ◦α.
This algebraic structure has certain properties such as non-commutativity and non-associativity. The
main objective of our work is to study the algebraic structure generated by a finite initial population of
cellular automata through recombination operation. In particular, to study the Cayley graph analogue
for our structure, which can be seen as the phylogenetic tree for the initial population. The question
is, depending on α, what is the maximal diversity in the genotypes? What is changing in the algebraic
structure as we change α?
[Joint work with António Patrício, Ana Paula Pimenta (FCT, Univ. NOVA Lisboa).]
References
1. Carlos Ramos, Marta Riera (2009) Evolutionary dynamics and the generation of cellular automata,
Grazer Math. Ber. ISSN 1016-7692. Bericht Nr. 354, 219–236.

John Rhodes University of California, Berkeley

Boolean representations of simplicial complexes: beyond matroids
We give a “crash course” on finite simplicial complexes admitting Boolean representations. Arbitrary finite
matroids arise as a particular case. Zur Izhakian and I invented the theory of Boolean representations of
simplicial complexes in 2008, and Pedro Silva and I later developed and matured the theory (see Boolean
Representations of Simplicial Complexes and Matroids, by Rhodes and Silva, Springer Monographs in
Mathematics, 2015). Stuart Margolis has recently made contributions to the theory. A background in
standard undergraduate mathematics (linear algebra and combinatorics) is all that would be required to
understand this talk.

Emanuele Rodaro Politecnico di Milano

Equalizers and kernels in categories of monoids
Let Mon be the category of monoids and C a full subcategory of Mon. The first aim of this seminar is to
study equalizers in the category C when C is, in particular, one of the categories Mon, CMon, cCMon,
rKMon, IMon and of all monoids, commutative monoids, cancellative commutative monoids, reduced
Krull monoids, inverse monoids and free monoids, respectively. In all these categories C, the equalizer of
any two morphisms f, g : M → N in C exists and has the form ε : E → M , where E = {x ∈ M | f(x) =
g(x)} and ε is the embedding (in order to see this, the only thing that must be checked is that if f and
g are morphims in C, then the submonoid E of M is an object of C).
For a monoid morphism f : M → N between two monoids M and N , the natural notion of kernel is that
of the congruence ∼f on M defined, for every m,m′ ∈ M , by m ∼f m′ if f(m) = f(m′). Here we will
use the completely different notion of kernel in the categorical sense. Indeed, since all these categories C
contain the trivial monoid (with one element), which is the zero object in C, a second related problem
we consider is that of determining the kernels in C, i.e., the equalizers of a morphism in C and the zero
morphism. In all the aforementioned categories, the kernel of f : M → N is simply the embedding of the
submonoid f−1(1N ) into M , but a complete characterization of kernels in these categories is not always
trivial, and leads to interesting related notions. Kernels (in the categorical sense) and equalizers identify
interesting classes of monomorphisms.
As a motivation, consider for instance, the well known cases in which C is one of the categories Grp,
Ab or TF of all groups, abelian groups, torsion free abelian groups, respectively. In these categories, the
concepts we run into when we determine equalizers and kernels are those of normal subgroup and pure
subgroup. Hence we determine kernels and equalizers in subcategories C of Mon to identify analogues of
normal subgroups and pure subgroups in the case of the categories Mon, CMon, cCMon, rKMon, IMon
and .
[Joint work with Alberto Facchini (University of Padova).]
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Parackal G. Romeo Cochin University of Science and Technology

On the Lattice of Biorder Ideals of Regular Rings
Biordered set was introduced by Nambooripad to describe the structure of the set of idempotents of a
semigroup, which we recall below. For the properties and results regarding biordered sets see [5].
A partial algebra E is a set together with a partial binary operation on E. Then (e, f) ∈ DE if and only
if the product ef exists in the partial algebra E. On E we define

ωr = {(e, f) : fe = e} ωl = {(e, f) : ef = e}
ωr(e) = {f : ef = f} ωl(e) = {f : fe = f}

and R = ωr ∩ (ωr)−1, L = ωl ∩ (ωl)−1, and ω = ωr ∩ωl. We will refer ωr and ωl as the right and the left
quasiorder of E.

Definition 1. Let E be a partial algebra. Then E is a biordered set if the following axioms and their
duals hold:

(1) ωr and ωl are quasi orders on E and

DE = (ωr ∪ ωl) ∪ (ωr ∪ ωl)−1

(2) f ∈ ωr(e)⇒R fe ω e
(3) g ωl f and f, g ∈ ωr(e)⇒ ge ωl fe.
(4) g ωr f ωr e⇒ gf = (ge)f
(5) g ωl f and f, g ∈ ωr(e)⇒ (fg)e = (fe)(ge).

We write E = 〈E,ωl, ωr〉 to mean that E is a biordered set with quasiorders ωl, ωr. Let M(e, f) denote
the quasi ordered set (ωl(e) ∩ ωr(f), <) where < is defined by g < h⇔ eg ωr eh, and gf ωl hf. Then the
set

S(e, f) = {h ∈M(e, f) : g < h for all g ∈M(e, f)}
is called the sandwich set of e and f .

(1) f, g ∈ ωr(e)⇒ S(f, g)e = S(fe, ge)

The biordered set E is said to be regular if S(e, f) 6= ∅ for all e, f ∈ E.

Definition 2. For e ∈ E, ωr(e)
[
ωl(e)

]
are principal right [left] ideals and ω(e) is a principal two sided

ideal and are called biorder ideals generated by e.

Principal Ideals of Regular Ring
A ring (R,+, ·) is called regular if for every a ∈ R there exists an element a′ such that aa′a = a. A subset
A of a ring R is called right ideal in case

x+ y ∈ A, xz ∈ A

for each x, y ∈ A and z ∈ R.
If R is a ring and a ⊂ R is a right ideal then a has a unique least extension 〈a〉r containing a. Similarly
we have the unique left ideal 〈a〉l and two sided ideal 〈a〉 containing a.

Definition 3. A principal right [left] ideal is one of the from 〈a〉r[〈a〉l]. The class of all principal right
[left] ideals will be denoted by R̄R [L̄R].

Theorem 1. Let R be a regular ring, then the set R̄R is a complemented, modular lattice partially ordered
by ⊂, the meet being ∩ and join ∪, its zero is 〈0〉r and its unit is 〈1〉r.

Analogous to von Neumann’s construction of the principal ideals of a regular ring, the structure of the
biorder ideals of regular rings are described in the following theorems.

Theorem 2. Let R be a ring then the set of all principal ωl-ideals ΩL and the set of all principal ωr-ideals
ΩR of R are complemented, modular lattices ordered by the relation ⊂, the meet being ∩ and the join ∪;
its zero is 0, and its unit is ωl(1)[ωr(1)].

Theorem 3. Let R be regular ring with M(ei, ej) = {0} for i 6= j and dl(ei, ej) ≤ 3. Then the
complemented, modular lattice ΩL[ΩR] is of order n.
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Anne Schilling University of California, Davis

A Markov chain on semaphore codes and the fixed point forest
We present two combinatorial/probabilistic models that might be of interest to the study of semigroups:
The first structure is a Markov chain on semaphore codes that appeared in joint work with Pedro Silva
and John Rhodes (arXiv:1509.03383 and arXiv:1604.00959, IJAC to appear). A semaphore code is a
suffix code with a right action of the semigroup A≤k of words of length at most k in the alphabet A.
Multiplication in this semigroup is concatenation and taking the last k letters if the length is bigger
than k. It turns out that semaphore codes approximate right congruences in the lattice (by inclusion)
of right congruences. An important question is which elements in the semigroup are resets, that is, act
as constant maps on a right congruence. On semaphore codes, we are able to compute the stationary
distribution and hitting time to reset explicitly.
Elliptic maps on finite trees provide a powerful tool to study semigroups. Hence an understanding of
properties of trees is important. In her undergraduate thesis at UC Davis in 2015, Gwen McKinley
studied the following partial sorting algorithm on permutations of size n. Take the first entry in the
one-line notation of the permutation and move it into the place of its value. This gives rise to a forest
structure, which we call fixed point forest, with derangements as leaves and permutations π with π(1) = 1
as roots. Despite its simple description it exhibits a rich structure. In joint work with Tobias Johnson
and Erik Slivken (arXiv:1605.09777) we analyze the local structure of the tree at a random permutation
in the limit as n→∞.

Hossein Shahzamanian University of Porto

The rank of variants of nilpotent pseudovarieties
Mal’cev and independently Neumann and Taylor have shown that nilpotent groups can be defined by
semigroup identities (that is, without using inverses). This leads to the notion of a nilpotent semigroup (in
the sense of Mal’cev). The finite nilpotent semigroups, the finite Neumann-Taylor semigroups, the finite
positively Engel semigroups and the finite Thue-Morse semigroups, separately, constitute pseudovarieties.
These are examples of ultimate equational definitions of pseudovarieties in the sense of Eilenberg and
Schützenberger. We denote them, respectively, by MN, NT, PE and TM. We investigated the rank of
these pseudovarieties. We showed that the pseudovariety NT has infinite rank and, therefore, it is non-
finitely based.
Finite aperiodic (in the sense of Mal’cev) semigroups can be divided in four classes. The pseudovariety
BGnil does not contain any semigroup in the class (1). The pseudovariety PE does not contain any
semigroup in the classes (1) and (2) and the pseudovariety MN contains semigroups in none of them. On
the other hand, S ∈ PE if S ∈ BGnil and F7 6≺ S. We introduced the pseudovariety . A finite semigroup
S is in if S ∈ BGnil, F7 6≺ S and F12 6≺ S. We proved that semigroups constitutes a pseudovariety. The
pseudovariety is strictly contained in the pseudovariety PE and strictly includes the pseudovariety NT
and it does not contain any semigroup in the classes (1), (2) and (3).
[Joint work with Jorge Almeida (CMUP, Univ. Porto).]

Vyacheslav Shaprynskii Ural Federal University

An example of non-nilpotent almost nilpotent nilsemigroup
A semigroup is called almost nilpotent if each its proper subsemigroup is nilpotent. Investigation of
almost nilpotent semigroups was inspired by Lev Shevrin since the early sixties. Describing almost nilpo-
tent semigroups which are not nilsemigroups is nearly trivial. The nil-case appeared to be much more
difficult. The following problem was stated in [1]:
Question. Is every almost nilpotent nilsemigroup nilpotent?
This problem was the subject of a series of papers. The results obtained there are observed in the sur-
vey [2]. In the same article a candidate for being a counter-example is suggested. This semigroup may be
defined by an infinite set of relations over a countably infinite alphabet. That relations are chosen in such
a way that either the resulting semigroup is a counter-example or the relations collapse this semigroup
into one element. Unfortunately, A.N.Silkin proved at the beginning of 1990’s that the latter is the case.
The aim of my report is to present a modified version of the semigroup in [2] which avoids the mentioned
collapsing effect. This result completes the search for a counter-example.
References
1. Shevrin L.N. To the general theory of semigroups // Matem. Sb., Vol. 53, No 3, 1961, P. 367–385.
(Russian)
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Filipa Soares Inst. Sup. Eng. Lisboa

Local finiteness for Green relations in (I-)semigroup varieties
This work is devoted to the notion of local K-finiteness for varieties, where K stands for any of the five
Green’s relations, with respect to varieties of semigroups and varieties of I-semigroups, which are classes
of algebras of type (2, 1) satisfying the identities

x(yz) = (xy)z , xx′x = x , (x′)′ = x

(with a 7→ a′ denoting the unary operation). Thus, for instance, both completely regular semigroup
varieties and inverse semigroup varieties can be found within varieties of I-semigroups.
For K ∈ {H,L,R,D,J }, we say that a semigroup is K-finite if it contains only finitely many (distinct)
K-classes and that a variety V of (I-)semigroups is locally K-finite if every finite generated semigroup
from V is K-finite. Thus, these notions constitute a generalization of the important concept of locally
finite variety.
In this talk, several properties of K-finite semigroups will be described and the lattices of varieties of
semigroups and of varieties of I-semigroups characterised with respect to these properties. Namely, we
address the connections between H-, L-, R-, D-, and J -finiteness, conservation or loss under certain
operators, and apply them to the study of varieties. The present success of the characterisation varies;
if the case of completely regular semigroup varieties is fairly settled, some questions remain unanswered
for inverse semigroup varieties, and many persist in semigroup varieties.
[Joint work with Pedro V. Silva (CMUP, Univ. Porto).]

Manuela Sobral University of Coimbra

Homological lemmas for Schreier extensions of monoids
In the paper [3] we introduced the notion of Schreier split epimorphism of monoids. These split epi-
morphisms correspond to classical monoid actions, that is monoid homomorphisms into the monoid of
endomorphisms, recovering in this context the classical equivalence between group actions and split exten-
sions. Such equivalence allowed to obtain a description of crossed modules in terms of internal structures
[5,3].
Later, in [1,2], we investigated some Mal’tsev-type properties of Schreier split epimorphisms. Namely,
we introduced the notion of Schreier reflexive relation and proved that all such relations are transitive,
being equivalence relations if and only if their zero-classes are groups. This lead to the notion of special
Schreier extension: a surjective monoid homomorphism f is a special Schreier extension when its kernel
congruence is a Schreier equivalence relation. This amounts to have a partial subtraction on the domain
of f .
In this talk, we will show that special Schreier extensions satisfy relative versions of the classical ho-
mological lemmas, such as the (Split) Short Five Lemma [1,2] and the Nine Lemma [4]. These are the
building blocks to construct Baer sums of special Schreier extensions with abelian kernel.
[Joint work with Nelson Martins Ferreira and Andrea Montoli.]
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Nasir Sohail Wilfrid Laurier University

On Epimorphisms of Ordered Algebras
Flatness properties and amalgamation of monoids are known to undergo ‘sever’ restrictions if a compatible
order is introduced on top of the algebraic structure. For instance the three-element chain semilattice,
that is absolutely flat and hence an amalgamation base in the class of all monoids, fails to retain these
properties in the ordered context for its nine out of thirteen compatible orders. We, however, proved in
2015 that epimorphisms of monoids (and semigroups), are not affected by the introduction of order. In
this talk we shall present our recent work which shows that epimorphisms in certain varieties of algebras
may not be affected by the introduction of order. In particular, considering the varieties of all ordered and
unordered algebras of a given type we show that epimorphisms are surjective in both of these varieties.
We also show that in varieties defined via ‘balanced identities’ epimorphisms are not affected by order.
References
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in pomonoids, Semigroup Forum 80: 272—292.
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Itamar Stein Bar Ilan University

Algebras of Ehresmann semigroups and categories
The well known Ehresmann-Schein-Nambooripad (ESN) theorem states that the category of inverse
semigroups is isomorphic to the category of inductive groupoids with inductive functors as morphisms.
E-Ehresmann semigroups are a commonly studied generalization of inverse semigroups. There is also a
notion of an Ehresmann category which is a generalization of an inductive groupoid. Lawson generalized
the ESN theorem and proved that the category of all E-Ehresmann semigroups is isomorphic to the
category of all Ehresmann categories. In this talk we will show that under some finiteness condition,
the semigroup algebra of an E-Ehresmann semigroup is isomorphic to the category algebra of the cor-
responding Ehresmann category. This generalizes a result of Steinberg who proved this isomorphism for
inverse semigroups and inductive groupoids and a result of Guo and Chen who proved it for finite ample
semigroups. We also characterize E-Ehresmann semigroups whose coresponding Ehresmann category is
an EI-category, i.e., a category for which every endomorphism is an isomorphism. The case of Ehresmann
EI categories is interesting because in this case there is a way to describe the Jacobson radical and the
ordinary quiver of the category algebra. We will give some natural examples and show that in certain
cases the maximal semisimple image of the semigroup algebra is spanned by an inverse subsemigroup of
the E-Ehresmann semigroup.
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Benjamin Steinberg City University of New York

Model theory and the free pro-aperiodic monoid
We introduce an approach to the free pro-aperiodic monoid using model theory. This method allows one
to apply arguments very similar to those of combinatorics on words to elements of the free pro-aperiodic
monoid. We recover many of the known results about the algebraic structure of this monoid in a fairly
elementary way (once one absorbs some classical model theory). The method is particularly effective
for omega-terms, where we are able to obtain a number of results of Almeida, Costa, Zeitoun and of
Huschenbett and Kufleitner that previously relied on McCammond’s normal form theorem, which arose
out of his work on free Burnside semigroups, as well as generalizations.
This talk will assume no background on model theory and very little background on profinite semigroups.
[Joint work with my postdoc Sam van Gool. ]

Mária Szendrei University of Szeged

Embedding in factorisable restriction monoids
Restriction semigroups have arisen from a number of mathematical perspectives. They are semigroups
equipped with two additional unary operations which satisfy certain identities, and they are non-regular
generalisations of inverse semigroups. Each inverse semigroup determines a restriction semigroup where
the unary operations assign the idempotents aa−1 and a−1a, respectively, to any element a. The class of
restriction semigroups is just the variety of algebras generated by these restriction semigroups obtained
from inverse semigroups [1].
So far, a number of important results of the structure theory of inverse semigroups have been recast in the
broader setting of restriction semigroups. It is established that each restriction semigroup has a proper
cover where a proper restriction semigroup is the analogue of an E-unitary inverse semigroup [1]. Notions
of factorisability and almost factorisability — both one- and two-sided versions — are introduced in a
way similar to the inverse case [2], [4]. Moreover, each of these restriction semigroups is characterised as
a (projection separating) homomorphic image of a semidirect-like product of a semilattice by a monoid.
In particular, a restriction monoid turns out to be factorisable if and only if it is a (projection separating)
homomorphic image of a semidirect product of a semilattice monoid by a monoid where the latter monoid
acts on the semilattice monoid by automorphisms. Finally, each restriction semigroup is proved to be
embeddable in an almost left factorisable restriction semigroup [4].
Since the definition of a restriction semigroup is left-right symmetric, it is natural to ask whether a
stronger result holds where one-sided factorisability is replaced by two-sided. The main result of the talk
answers this question in the affirmative:
Theorem. Each restriction semigroup is embeddable in a factorisable restriction monoid.
[Joint work with Victoria Gould and Miklós Hartmann [3].]
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Richard M. Thomas University of Leicester

Word problems and formal language theory
The word problem of a finitely generated group is a fundamental notion in group theory; we choose a
finite generating set for our group G and then define the word problem of G to be the set of all the
words in the generators of the group that represent the identity element of G. This formulation allows us
to consider the word problem of a group as a formal language and there has been considerable research
concerning the connections between the complexity of this set of words as a formal language and the
algebraic structure of the corresponding group.
One interesting question is that of asking, given a particular family F of formal languages, which groups G
have a word problem lying in F . It would appear that whether or not the word problem of a group G
lies in the family F depends on the choice of generating set for G, but it is well known that this is not
generally the case for natural families of languages.
Another interesting question is that of characterizing which languages are word problems of groups,
asking, in particular, what sets of conditions on languages are necessary and sufficient for that language
to be a word problem of a finitely generated group. A related question is that of the decidability of such
conditions for certain natural families F of languages.
A natural question is the extent to which this generalizes to finitely generated semigroups. In a group G
two words u and v over the generators represent the same element of G if and only if uv−1 represents the
identity element, which is why we focus on the set of words representing the identity in that case, but
this will no longer work when we consider semigroups. Following Duncan and Gilman one could define
the word problem of a finitely generated semigroup S to be the set of all words of the form u#vrev where
u and v are words in the generators of S which represent the same element of S; here # is a new symbol
that is not a generator of S and vrev denotes the reversal of the word v.
Given this we can talk about the word problem of a finitely generated semigroup lying in a family F
of formal languages as well. As with groups, the membership of the word problem of a semigroup S
lying in F is independent of the choice of finite generating set for S under certain mild assumptions on
the family F . This definition for semigroups is a natural extension of the notion of the word problem
from groups to semigroups since the word problem of a group G in the group sense lies in a family F of
languages if and only if the word problem of G in the semigroup sense lies in F .
The purpose of this talk is to survey some of what is known about these problems and to mention some
open questions. We will be focussing on families of languages low in the Chomsky hierarchy, namely the
regular, one-counter and context-free languages.
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Vojtěch Vorel Charles University

Uncertainty and Synchronization
In a system described by a deterministic finite automaton A = (Q,Σ, δ), uncertainty corresponds to a
set of possible states S ⊆ Q. A reset word is an input sequence w ∈ Σ∗ that maps all the states of S
to a single state, i.e., ‖δ(S,w)‖ = 1. The process of modifying and reducing the current uncertainty by
applying the letters of w is referred to as synchronization. We ask:

(1) For a given DFA with a given uncertainty, does there exist a reset word?
(2) For a given DFA with a given uncertainty, what is the minimum length of reset words?
(3) For a given n, what is the greatest minimum length between all n-state DFA?

The special case of S = Q is widely studied within the pursuit of resolving the Černý conjecture. In that
case, shortest reset words are at most of cubic length in the number of states and their existence can be
tested in polynomial time. In the general scope of S ⊆ Q, the lengths of shortest reset words become
exponential and the testing becomes PSPACE-complete. Though these facts became classical during the
last century, the field was not explored with enough precision. This contribution presents recent results
that give answers to the following key questions:

(1) Is there a polynomial (or at least 2o(n)) upper bound on the length of shortest reset words in
strongly connected n-state DFA?

(2) Is there a 2o(n) upper bound on the length of shortest reset words in n-state DFA with a fixed
alphabet?

Note that 2O(n) is a general upper bound following from the number of possible uncertainties. Unfortu-
nately, both the above questions turn out to have negative answers. The new 2Ω(n) lower bound involves
DFA that combine both the restrictions, i.e., are strongly connected and binary [5]. The following table
shows that in certain sence the new result closes the history of lower bounds on minimum lengths of reset
words.

alphabet
size

strong
connectivity

min. length
of reset words

Subset listing construction [1]
2θ(n) no 2θ(n)

Basic radix construction [3]
θ(n) no 2θ(n)

High-order permutation constr. [2]
2 no 2θ(

3
√
n logn)

Extended radix construction [4]
2 no 2θ(

n
log n )

The new method [5]
2 yes 2θ(n)

.
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Tamás Waldhauser University of Szeged

Strong affine representations of the polycyclic monoids
Certain representations of the polycyclic monoid Pn and of the Cuntz C∗ algebra On can be given by
so-called branching function systems (X; f1, . . . , fn), where

• X is an infinite set,
• each fi : X → X is an injective function,
• the sets fi (X) are pairwise disjoint, and
• X = f1 (X) ∪ · · · ∪ fn (X).

We get a very natural special case by letting X = Z and fi (x) = nx+ di, where d1, . . . , dn is a complete
system of residues modulo n. The union of the inverse maps gives a transformation R := f−1

1 ∪ · · · ∪ f−1
n

of Z, yielding a discrete dynamical system (Z;R). The periodic points of this dynamical system (called
atoms in the context of representations) determine the structure of the corresponding representation of
Pn and On. Our goal is to generalize the results obtained by Jones and Lawson (for Pn) and by Bratteli
and Jorgensen (for On) on the periodic points in the case n = 2.
We determine the periodic points for arbitrary n when d1, . . . , dn is an arithmetic sequence (note that
this is always the case if n = 2). It turns out that arithmetic sequences give in some sense the largest
possible set of periodic points, and we provide a characterization of all other sequences yielding such a
large set of periodic points. On the other extreme, we present infinite families of examples with a single
periodic point. We also study the asymptotic behavior of the number of periodic points. We prove that
the number of periodic points grows linearly if the parameters d1, . . . , dn tend to infinity in a proportional
way, and we also give an asymptotically sharp upper estimate when one of the parameters tends to infinity
with the others being fixed.
[Joint work with Miklós Hartmann (University of Szeged).]

Marc Zeitoun University of Bordeaux

Separation-like problems for regular languages
This talk focuses on some problems on classes of regular word languages. Such problems aim at capturing
the expressiveness of logical or combinatorial formalisms. Since the work of Schützenberger, the most
classical one is the "membership problem", which asks for an algorithm deciding whether a regular input
language belongs to the class under investigation. Membership algorithms have been designed for many
natural classes of languages, often originating from algebraic characterizations. However, some classes
seem to require new conceptual ingredients.
Such ingredients introduced so far involve problems that are more demanding than membership, and may
also be computationally harder. This may seem surprising at first, but can be explained by the fact that
membership is not flexible enough as a framework. One such problem, defined by Henckell and Rhodes,
consists in computing particular subsets of a semigroup, called "pointlike sets". The restriction of this
problem to subsets of size 2 is already challenging, and has been given a nice formulation in terms of
separation by Almeida (as well as the general problem). I will introduce these problems and try to convey
the intuition of why they are indeed interesting.
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