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Abstract. We address the problem of banking system resilience by applying off-equilibrium statistical
physics to a system of particles, representing the economic agents, modelled according to the theoretical
foundation of the current banking regulation, the so called Merton-Vasicek model. Economic agents are
attracted to each other to exchange ‘economic energy’, forming a network of trades. When the capital level
of one economic agent drops below a minimum, the economic agent becomes insolvent. The insolvency of
one single economic agent affects the economic energy of all its neighbours which thus become susceptible
to insolvency, being able to trigger a chain of insolvencies (avalanche). We show that the distribution of
avalanche sizes follows a power-law whose exponent depends on the minimum capital level. Furthermore,
we present evidence that under an increase in the minimum capital level, large crashes will be avoided only
if one assumes that agents will accept a drop in business levels, while keeping their trading attitudes and
policies unchanged. The alternative assumption, that agents will try to restore their business levels, may
lead to the unexpected consequence that large crises occur with higher probability.

1 Introduction

The well-being of humankind depends crucially on the fi-
nancial stability of the underlying economy. The concept
of financial stability is associated with the set of condi-
tions under which the process of financial intermediation
(using savings from some economic agents to lend to other
economic agents) is smooth, thereby promoting the flow
of money from where it is available to where it is needed.
This flow of money is made through economic agents, com-
monly called ‘banks’, that provide the service of intermedi-
ation and an upstream flow of interest to pay for the sav-
ings allocation. Because the flow of money that ensures
financial stability occurs on top of a complex intercon-
nected set of economic agents (network), it must depend
not only in individual features or conditions imposed to
the economic agents but also on the overall structure of
the entire economic environment. The role of banking reg-
ulators is to protect the flow of money through the system
by implementing rules that insulate it against individual
or localised breaches that happen when a bank fails to
pay back to depositors. However, these rules do not al-
ways take into account the importance of the topological
structure of the network for the global financial stability.
In this paper, we will present quantitative evidence that
neglecting the topological network structure when imple-
menting financial regulation may have a strong negative
impact on financial stability.

a e-mail: joao.cruz@closer.pt

Fig. 1. Illustration of a bank ‘apparatus’ for money flow. A
bank lends money to debtors using money from depositors and
also its own money, the capital. In return debtors pay interest
to the bank, which keeps a part to itself and pays the depositors
back.

The event of not paying back the money owed is called
‘default’. In order that downstream defaults do not gen-
erate the default of a particular bank, each bank holds an
amount of money as a reserve for paying back its deposi-
tors. In other words, a part of the money one bank sends
downstream is its own money. This share of own money
is called ‘capital’ (see Fig. 1). Looking to one single bank,
if it has a large amount of capital, one reasonably expects
that the bank will also cover a proportionally large debtor
default, guaranteeing the deposits made by its depositors.
On the contrary, if the capital level of the bank is small, a
small debtor default is sufficient to put the bank with no
conditions for guaranteeing the money of all its depositors.
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Loosing such conditions, the bank enters a situation called
bankruptcy or insolvency. Usually, bank regulators base
their rules in such arguments.

In 1988, a group of central bank governors called the
Basel Committee on Banking Regulation unified the cap-
ital level rules that were applied in each of the member
countries and defined a global rule to protect the banking
system that was becoming global at the time [1]. Roughly
speaking, these rules imposed a minimum capital level of
8% without any empirical reason. A few years later the
accord came under criticism from market agents who felt
that it did not differentiate enough between the various
debtors, i.e. between the entities whom the bank lends
money, and a second version of the accord [2] was fin-
ished in 2004 to become effective in 2008. In this second
version, banks were allowed to use the Merton-Vasicek
model [3] based on the Value-at-Risk paradigm(VaR) [4]
to weight the amount of lent money in the calculation of
the necessary capital according to the measured risk of
the debtor. Thus the 8% percentage was now calculated
over the weighted amount and not over the total amount.
This version of the accord become effective at the begin-
ning of the 2008 financial turmoil; with regulators under
severe criticism from governments and the media, in 2010
the Committee issued a new version [5] tightening capital
rules.

At the same time, since the beginning of the 2000s
the academic community has been very critical of the
capital rules, particularly because the VaR paradigm, on
which such rules are based, assumes that returns are nor-
mally distributed and “does not measure the distribution
or extent of risk in the tail, but only provides an esti-
mate of a particular point in the distribution” [6]. In fact,
there is a huge amount of evidence [7–10] that the returns
of economic processes are not normally distributed, hav-
ing typically heavy tails. According to the Central Limit
Theorem [11], if returns are heavy-tail distributed, then
the underlying random variables have infinite variance
or a variance of the order of the system size [12]. In
economic systems, random variables are related to mea-
surements taken from economic agents. Thus, the infinite
variance results from long-range correlations between the
economic agents. We will argue that this single fact com-
promises the stability of the flow and brings into question
the effectiveness of capital level rules.

Physics, and in particular statistical physics, has long
inspired the construction of models for explaining the evo-
lution of economies and societies and for tackling major
economic decisions in different contexts [13,14]. The study
of critical phenomena and multi-scale systems in physics
led to the development of tools that proved to be use-
ful in non-physical contexts, particularly in financial sys-
tems. One reason for this is that fast macroeconomic in-
dicators, such as principal indices in financial markets,
exhibit dynamical scaling, which is typical of critical
physical systems [15].

In this paper we will address the problem of the fi-
nancial stability using statistical physics models that ex-
plain the occurrence of large crises, in order to show that

the resilience of the banking system is not necessarily im-
proved by raising capital levels. Our findings have a con-
crete social importance, since capital is the most expensive
money a bank can provide to its debtors. Capital belongs
to the shareholders, who bear the risk of the business and
keep the job positions. So it must be remunerated above
the money from depositors who do not bear these risks.
Consequently, more capital means more costs on the flow
of the money and, in the end, more constraints to eco-
nomic development.

We start in Section 2 by describing an agent-based
model [14] which enables us to generate the critical
behaviour observed in economic systems. In Section 3 we
describe the observables that account for the economic
properties of the system, namely the so-called overall
product and business level [16]. Furthermore, the agent-
based model as well as the macroscopic observables, are
discussed for the specific situation of a network of banks
and their deposits and loans. One important property in
financial banking systems is introduced, namely the min-
imum capital level, defined here through the basic prop-
erties of agents and their connections. In Section 4 we
focus on the financial stability of the banking system,
showing that raising capital levels promotes concentration
of economic agents if the economic production remains
constant and it destroys economic production if that con-
centration does not occur. Finally, we present specific sit-
uations where each agent seeks the stability of its eco-
nomic production after a raise in capital levels, leading to
a state of worse financial stability, i.e. a state in which
large crises are more likely to occur. In Section 5 we draw
the conclusions.

2 Minimal model for avalanches of financial
defaults

The model introduced in this section is based on a funda-
mental feature that human beings have developed in their
individual behaviour, through natural selection, in order
to be able to fight environmental threats collectively. It
is called specialisation [17], and describes the tendency
individuals have, when living in communities, to concen-
trate on one, or at most a few, specific tasks. Each in-
dividual does not need to do everything to survive, just
to concentrate on a few tasks that he/she can do better
for all the other individuals. Everything else he or she
will get from other specialised elements of the community.
Thus, specialisation leads to optimisation, enabling the
entire community to accomplish goals otherwise unattain-
able. However, it also implies that individuals now need
to exchange what they do, so that all have everything
they need for survival. The set of all task and product ex-
changes between individuals is what we usually call Econ-
omy. Consequently, when building an economic system, a
reasonable approach is to take agents which are impelled
to exchange some product through a network of trades
between pairs of agents. In this scope, let us assume that
the economic environment is composed of elementary par-
ticles called ‘agents’ and all phenomena occurring in it
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result from the interaction of those particles. Let us also
assume that agents are attracted to interact, exchanging
an observed quantity that takes the form of money, labour
or other effective means used in the exchange. This type of
model where the decision concerning an exchange is made
by the exchanging agents alone is called a “free-market
economy”.

We represent these interactions or trades between
agents through economic connections, and call the ex-
changed quantity ‘economic energy’. Though the “energy”
used here is not the same as physical energy, we will use
the term in the economical context only. Notice, however,
that human labour is assumed to be “energy” delivered
by one individual to those with whom he/she interacts,
which reward the individual with an energy that he/she
accumulates. The balance between the labour (“energy”)
produced for the neighbours and the reward received from
them may be positive (agent profits) or negative (agent ac-
cumulates debt). For details see reference [18]. This anal-
ogy underlies the model introduced in the following, where
we omit the quotation marks and consider entities more
general than individual, which we call agents. Agent-based
models of financial markets have been intensively studied,
see e.g. references [14,19] and references therein.

Economic connections between two agents are in gen-
eral not symmetric and there is one simple economic rea-
son for that: if a connection were completely symmetric
there would be no reason for each of the two agents to
establish an exchange. In several branches of Economics
we have different examples of these asymmetric economic
connections like production/consumption, credit/deposit,
a labour relation, repo’s, swaps, etc. In the next sec-
tion, we will focus on a specific connection, namely in
credit/deposit connections.

Since each connection is asymmetric we distinguish the
two agents involved by assigning two different types of
economic energy. Hence, let us consider two connected
agents, i and j, where i delivers to j an amount of en-
ergy Wij and receives an amount Eij �= Wij in return. We
call these connections the outgoing connections of agent i.
The connections where agent i receives from j an amount
of energy Wji and delivers in return Eji we call incoming
connections.

The energy balance for agent i in one single trade
connection is, from a labour production point of view,
Uij = Wij − Eij . Having two different types of energy,
we choose Wij as the reference to which the other type
Eij = αijWij is related through the coefficient αij (see
Eq. (2) below). Without loss of generality, we consider
that one connection corresponds to the delivery of one
unit of energy, Wij = 1, yielding:

Uij = 1 − αij . (1)

In order to implement the model, we need to define the
form of the coefficient αij in equation (1), which is a con-
nection property. The amount of energy Eij that one agent
i gets in return for a delivered amount Wij can be taken as
a price which depends on the rules of supply and demand.
An agent delivering energy to many neighbours tends to

impose a higher price on them. Similarly, an agent re-
ceiving energy from many other neighbours will induce
a reduction in the price imposed by its creditors. These
principles can be incorporated in a simple Ansatz as:

αij =
2

1 + e−(kout,i−kin,j)
(2)

where kout,i is the number of outgoing connections of agent
i and kin,j is the number of incoming connections of neigh-
bour j. For αij > 1 the energy provided by agent i to agent
j is ‘paid’ by j above the amount of energy agent i deliv-
ers. Thus, agent i profits from this connection and gains a
certain amount of energy, Ui > 0. For αij < 1 the opposite
occurs. From equation (2) one easily sees that αij is a step-
function with average value one and very small derivatives
in the asymptotic limits kin,j � kout,i and kin,j � kout,i.
Furthermore, in this latter limit kin,j � kout,i, the value of
αij could in principle be any finite value larger than one.
However, to guarantee symmetry between the situation
when agent i profits from agent j, and that when agent
j profits from agent i, we consider the range αij ∈ [0, 2],
yielding αij = 2 for kin,j � kout,i.

Such energy transactions have an Economics analogue
according to basic principles [17]: a large (small) kin,j indi-
cates a large (small) supply for agent j and a large (small)
kout,i indicates a large (small) demand of agent i. Thus,
the difference kout,i − kin,j measures the balance between
the demand of an agent i and the supply of its neighbour
j. αij saturates for large positive and negative differences
in order to guarantee the price to be finite.

The definition of αij in equation (2) is not uniquely
determined by these economic requisites. Similar functions
such as the arc-tangent or the hyperbolic tangent have
been used in this context [20]. The main findings of this
manuscript are not sensitive to the choice of functional
dependency of αij as long as it is a step-function of kin,j −
kout,i.

In the model described above, we disregard the eco-
nomic details of agents and connections, keeping the
model as general as possible. Still, this generalisation is
not different in its essence from the one accountants must
use to provide a common report for all sorts of business,
with the difference that they use monetary units and we
use dimensionless energy units.

Because each agent typically has more than one neigh-
bour, the total energy balance for agent i is given by

Ui =
∑

all neighbours

Uij =
∑

j∈νout,i

(1−αij) +
∑

j∈νin,i

(αji − 1)

(3)
where j runs over all neighbours of agent i, and νout,i and
νin,i are, respectively the outgoing and incoming vicinities
of the agent.

This total energy balance Ui is related to the well-
known financial principle of net present value (NPV) [21]:
When an agent holds a deposit he or she supposedly pays
for it (by definition) and most (but not all) account-
ing standards [22] assume it as a negative entry on the
accounting balance. Here, we model deposits as a set of



Page 4 of 9 Eur. Phys. J. B (2012) 85: 256

incoming connections from the same agent in which all as-
sociated cash-flows were already discounted. In this way, if
we could think of a balance sheet totally built with NPV’s
we would be near Ui.

As we noted previously, economic energy is related to
physical energy in the sense that the agents must absorb
finite amounts of physical energy from the environment to
deliver economic energy. Consequently, the economic en-
ergy balance Ui of agent i must be finite. The finiteness
of Ui for each agent is controlled by a threshold value, be-
low which the agent is no longer able to consume energy
from its neighbours, i.e. below which it loses all its incom-
ing connections. Furthermore, since this threshold reflects
the incoming connections, it should depend on how many
incoming connections our agent has. With such assump-
tions, we introduce the quantity

ci ≡ Ui∑
j∈νin,i

(αji − 1)
(4)

for ascertaining if the agent is below a given threshold cth

or not. We call this quantity ci the ‘leverage’ of agent i.
Unlike we did previously in reference [18], here Ui is di-
vided by the total product of the incoming connections
solely and not by the ‘turnover’. This choice is made to
be in line with the way banking regulators define lever-
age. Still, this alternate definition does not change the
critical behaviour observed in our model and previously
reported [18]. For the case that the mean-field approxima-
tion αij ∼ 〈α〉 holds, the leverage ci depends exclusively
on the network topology, yielding ci = kout,i

kin,i
− 1 [18].

Leverage has a specific meaning in Economics, which
related to the quantity ci: it measures the ratio between
own money and total assets [21]. Thus, each agent has
a leverage ci which varies in time and there is a thresh-
old cth below which the agent ‘defaults’ or goes bankrupt,
losing its incoming connections with its neighbours. Since
the bankrupted agent is connected to other agents, the
energy balances must be updated for every affected agent
j. Bankruptcy leads to the removal of all incoming con-
nections of agent i, reducing the consumption of the
bankrupted agent to a minimum, i.e. keeping one single
consumption connection, kin,i = 1. This situation implies
that agent i and its neighbours j should be updated as
follows:

ci → kout,i − 1 (5a)
kout,j → kout,j − 1 (5b)

cj → cj − 1
kin,j

. (5c)

We keep the agent with one consumption connection in
the system also to avoid the divergence of ci as defined in
the context of financial regulation [1,2,5]. Such a minimum
consumption value has no other effect on the problem we
will be dealing with in the next section.

The bankruptcy of i leads to an update of the en-
ergy balance for neighbour j, which may then also
go bankrupt, and so on, thereby triggering a chain of

Fig. 2. Illustration of a bankruptcy avalanche. Each arrow
points to the agent for which it is an incoming connection.
Any agent in the economic environment is part of a complex
network (1), and is susceptible to go bankrupt, which will de-
stroy its incoming connections (2). Consequently, new energy
balances must be updated for the affected neighbours, whose
leverage can go over the threshold (3). Since these neighbours
also have neighbours of their own, connection will continue to
be destroyed until all agents again have a leverage above the
threshold.

bankruptcies henceforth called an ‘avalanche’. See illus-
tration in Figure 2.

The concepts of leverage and leverage threshold are
used by Merton [23] and Vasicek [3] in their credit risk
models, which are the theoretical foundation for the Basel
Accords [1,2,5]. Namely, Merton assumed this threshold
for pricing corporate risky bonds using a limit on debt-
equity ratio and Vasicek generalised it to a “debtor wealth
threshold” below which the debtor would default on a
loan.

3 Macroproperties: overall product
and business level

Let us consider a system of L interconnected agents which
form the environment where each agent establishes its
trades. We call henceforth this environment the operat-
ing neighbourhood. We can measure the total economic
energy of the system by summing up all outgoing connec-
tions to get the overall product UT , namely

UT =
N∑

i=1

∑
j∈Vout,i

(1 − αij), (6)

where Vout,i is the outgoing vicinity of agent i, with
kout,i neighbours. The quantity UT varies in time and its
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evolution reflects the development or failure of the un-
derlying economy. Instead of UT , we consider the relative
variation dUT

UT
, also known as ‘return’ in a financial con-

text. We can also measure the average business level per
agent, defined as the moving average in time of the overall
product:

Ω =
1
L

1
TS

∫ t+TS

t

UT (x)dx (7)

where TS is a sufficiently large period for taking time av-
erages. Similar quantities are used in Economics as indi-
cators of individual average standard of living [16]. In the
continuum limit, the time derivative of the business level
Ω gives the overall product uniformly distributed over all
agents.

At each time step a new connection is formed, ac-
cording to the standard preferential attachment algorithm
of Barabási-Albert [24]: for each connection created one
agent is selected using a probability function based on its
previous outgoing connections, expressed as

P (i) =
kout,i∑L
l=1 kout,l

(8)

and one other agent is selected by an analogous probabil-
ity function built with incoming connections. Such a pref-
erential attachment scheme is associated with power-law
features observed in the Economy long ago [25,26] and is
here motivated by first principles in economics that agents
are impelled to follow: an agent having a large number of
outgoing connections is more likely to be selected again to
have a new outgoing connection, and likewise for incoming
connections.

As connections are being created, a complex network
of economic agents emerges and individual leverages (see
Eq. (4)) are changing until eventually one of the agents
goes bankrupt (ci < cth) breaking its incoming connec-
tions and changing the leverage of its neighbours, who
might also go bankrupt and break their incoming con-
nections and so on. See Figure 2. This avalanche affects
the total overall product, equation (6), because the dissi-
pated energy released during the avalanche is subtracted.
This total dissipated energy is given by the total number
of broken connections, and measures the ‘avalanche size’,
denoted below by s. Since the avalanche can involve an
arbitrary number of agents, and is bounded only by the
size of the system, the distribution of the returns dUT

UT
will

be heavy-tailed, as expected for an economic system. See
Figure 5 below.

Until now we have been dealing with generic economic
agents that make generic economic connections between
each other. No particular assumption has been made be-
sides that they are attracted to each other to form con-
nections by the mechanism of preferential attachment and
that the economic network cannot have infinite energy.
From this point onward, we will differentiate some of
these agents, labeling them as ‘banks’. To this end we fix
the nature of their incoming and outgoing connections:
the incoming connections are called ‘deposits’, the outgo-
ing connections are called ‘loans’. We should emphasize

that we are not singling out this kind of agent from the
others. Banks are modelled as economic agents like any
other. We have only named its incoming and outgoing
connections, which we could also do for all the remain-
ing agents, as consuming/producing, salary/labour, pen-
sion/contribution, etc., to model every single business we
could think of. We are choosing this particular kind of
agent because banks are the object of banking regulation
and the aim of financial stability laws.

The threshold leverage cth for one bank represents its
‘minimum capital level’. The capital of one bank is re-
ally an amount of incoming connections, which are equiv-
alent to deposits, because shareholders are also economic
agents. This means that the ‘minimum capital level’ in
the model will be much higher than in real bank markets
because we are disregarding shareholders and adding the
remaining energy deficit to fulfill cth. Therefore, we can-
not map directly the levels obtained in the model onto
the levels defined in banking regulation. We can, however,
uncover the behaviour of economic agents in scenarios dif-
ficult to reproduce without such a model.

4 Raising the minimum capital level

In this section we use the model described above in differ-
ent scenarios, i.e. for different sizes of the operating neigh-
bourhood and different minimum capital levels. From
equation (4) one sees that the leverage of one agent is
always larger than −1. Since we deal with bankruptcy
we are interested in negative values of cth, which reduces
the range of leverage values to [−1,0]. Our simulations
showed that a representative range of values for both the
threshold and the size L of the operating neighbourhood is
[−0.72,−0.67] and [500, 2000] respectively. For each pair of
values (L, cth) the system evolves until a total of 1.5×106

connections are generated. We discard the first 105 time-
steps which are taken as transient.

Figures 3 and 4 illustrate the evolution of the overall
product UT and business level Ω for a situation in which
the minimum capital level is raised, while keeping the size
of the operating neighbourhood constant. The solid line
shows the initial situation with lower minimum capital
level and the dashed line the final situation with higher
minimum capital level. From Figure 3 we can see that if
the size of the operating neighbourhood is kept constant,
the quasi-stationary level of the overall product does not
significantly change.

Following this observation we next investigate the evo-
lution of the return distribution for UT , considering an in-
crease of the minimum capital level at constant size L of
the operating neighbourhood. To this end we compute the
cumulative size distribution of avalanches, i.e. the fraction
Pc(s) of avalanches of size larger than s. Numerically, the
size s of an avalanche is found by summing all connec-
tions destroyed during that avalanche. The value of Pc(s)
is then obtained by identifying the avalanches whose size
is greater than s.

Figure 5 shows the cumulative size distribution of
avalanches for different minimum capital levels, keeping
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Fig. 3. (Color online) Illustration of the effect of raising the
minimum capital level on the overall product UT , at constant
L = 1500. Raising cth from −0.71 (solid line) to −0.69 (dotted
line) does not significantly change the overall product.

Fig. 4. (Color online) Illustration of the effect of raising the
minimum capital on the business level at constant L = 1500.
Raising cth from −0.71 (solid line) to −0.69 (dotted line) de-
creases the business level from Ω = 2.88 to Ω = 2.75.

L = 2000. For small avalanche sizes, the Central Limit
Theorem holds [12] and thus all size distributions match
independently of the minimum capital level. For large
enough avalanches (‘critical region’), the size distribu-
tions deviate from each other, exhibiting a power-law tail
Pc(s) ∼ s−m with an exponent m that depends on the
minimum capital level cth (inset). As expected [27], the
exponent found for the avalanche size distribution takes
values in the interval 2 < m < 7/2.

As can be seen in the inset of Figure 5 the exponent
increases in absolute value for larger minimum capital lev-
els, indicating a smaller probability for large avalanches
to occur. However, this scenario occurs only when the size
of the operating neighbourhood is kept constant and, as
shown in Figure 4, the increase of the minimum capital
level is also accompanied by a decrease of the business
level. This means that each agent has less economic en-
ergy or, in current language, is poorer.

Assuming that agents do not want to be poorer de-
spite regulatory constraints, and therefore try to keep

Fig. 5. Avalanche (crises) size distributions for different sce-
narios of minimum capital level, keeping the operating neigh-
bourhood unchanged for each agent. The different distributions
match at small sizes, in the region where the central limit theo-
rem (CLT) holds, and deviate from each other for larger crises
(critical region). In the critical region one observes (inset) that
increasing the minimum capital level decreases the probability
for a large avalanche to occur, which supports the intentions
of the Basel III accords. However, in this scenario one assumes
that each bank will have a simultaneous decrease of their busi-
ness level (see text and Fig. 4). A more natural scenario would
be one where each bank reacts to the rise in the minimum
capital level in such a way as to keep its business level con-
stant, which leads to a completely different crises situation (see
Fig. 8).

their business levels constant (Fig. 6), a natural reaction
against raising the minimum capital level is to decrease
the number of neighbours with whom the agent estab-
lishes trade connections, i.e. to decrease the size of the
operating neighbourhood (Fig. 7). In Economics this is
called a concentration process [28], which typically occurs
when the regulation rules are tightened up. In such a sce-
nario where the size of the operating neighbourhood is
adapted so as to maintain the business level constant, the
distributions plotted in Figure 5 are no longer observed.
In particular, the exponent m does not increase monoton-
ically with the minimum capital level as we show next.

Figure 8a shows the critical exponent m and the busi-
ness level per agent Ω as functions of the minimum capital
level cth and the operating neighbourhood size L. For easy
comparison, both quantities are normalized in the unit in-
terval of accessible values.

The critical exponent shows a tendency to increase
with both the minimum capital level and the operating
neighbourhood size. The business level, on the other hand,
decreases when the minimum capital level or the neigh-
bourhood size increase. Considering a reference state F0

with cth,0, L0 and Ω0 there is one isoline of constant min-
imum capital level, Γ 0

cth
, and another of constant operat-

ing neighbourhood size, Γ 0
L, crossing at F0. Assuming a



Eur. Phys. J. B (2012) 85: 256 Page 7 of 9

Fig. 6. (Color online) Unlike in Figures 3 and 4 it is possible to
raise the minimum capital level cth from −0.71 (solid line) to
−0.69 (dashed line), while keeping the business level constant.
In the case plotted, Ω ∼ 2.88.

.

Fig. 7. (Color online) Keeping the business level constant at
Ω ∼ 2.88 and raising the minimum capital level from −0.71
(solid line) to −0.69 (dashed line) leads to a decrease of the
operating neighbourhood, which is reflected in a lower overall
product.

transition of our system to a larger minimum capital level
at isoline Γ f

cth
while keeping L constant, i.e. along the iso-

line Γ 0
L, one arrives at a new state FL with a larger crit-

ical exponent, which means a lower probability for large
avalanches to occur, as explained above. However in such
a situation the new business level Ωf is lower than the
previous one Ω0.

On the contrary, if we assume that the transition from
F0 to the higher minimum capital level occurs at constant
business level, i.e. along the isoline Γ 0

Ω, one arrives to a
state FΩ on the isoline Γ f

cth
for which the critical exponent

is not necessarily smaller than for the initial state.
From economical and financial reasoning, one typi-

cally assumes that, independently of external directives,
under unfavourable circumstances economical and finan-
cial agents try, at least, to maintain their business level.
This behaviour on the part of agents leads to a situation
which contradicts the expectations of the Basel accords
and raises the question of whether such regulation will
indeed prevent larger avalanches from occurring again in

Fig. 8. (Color online) (a) Normalized critical exponent m̄ and
business level Ω as functions of the minimum capital level cth

and system size L. For an initial financial state F0, an increase
of the minimum capital level takes the system along one of
the infinitely many paths between the initial and final isolines
at constant minimum capital level, Γ 0

cth
and Γ f

cth
respectively.

(b) If such a path follows the isoline at constant system size,
Γ 0

L, the critical exponent increases and thus the probability for
large avalanches decreases. Simultaneously however, its busi-
ness level decreases (Ωf < Ω0), which runs against the natural
intentions of financial agents. On the contrary, if the path is
along the isoline at constant business level, Γ 0

Ω, as one natu-
rally expects the financial agents would do, the critical expo-
nent does not change significantly, meaning that large financial
crises may still occur with the same probability as before (see
text).

the future. To illustrate this, Figure 8b shows a close-up
of the m-surface plotted in Figure 8a.

For the reference state F0 one finds an exponent
m = 2.97 ± 0.18. An increase of the minimum capi-
tal level at constant operating neighbourhood size (state
FL) yields m = 3.34 ± 0.09, while increasing the mini-
mum capital level at constant business level (state FΩ),
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yields m = 2.79 ± 0.09, which corresponds to a signifi-
cantly higher probability that large avalanches will occur.

5 Discussion and conclusion

In summary, raising the minimum capital levels may not
necessarily improve banking system resilience. Resilience
may remain the same if banks go after the same busi-
ness levels, as one should expect, according to economic
reasoning. Indeed, since business levels are part of the
achievement of any economic agent that enters a network
of trades, each agent will try, at least, to maintain this
level, independently of regulatory constraints.

Furthermore, our findings can solve the apparent con-
tradiction between the credit risk models that serve as the
theoretical foundation for bank stability accords and the
definition of capital levels. In fact, bank stability accords
impose on banks an adapted version of Merton-Vasicek
model [3] in which it is assumed that each agent has a
leverage threshold above which it defaults on credit. The
assumption of this threshold combined with a first prin-
ciple of Economics – that the Economy emerges from the
exchanges between agents – naturally leads to an inter-
play between agents that can propagate the effect of one
default throughout the entire economic system.

Economic systems have long-range correlations and
heavy-tailed distributions that are not compatible with a
linear assumption that raising individual capital levels will
lead to stronger stability. Because of the interdependency,
this assumption is probably valid only in two situations:
when it is impossible for an individual to default; and
when individuals behave independently from each other
(random trade connections). Both situations do not occur
in real economic systems.

These findings can inform the recent governmental
measures for dealing with the effects of the 2008 finan-
cial crises. In particular, governments have shown [5] a
tendency for imposing a higher capital investment from
banks. If the threshold is increased, while the total amount
of trade remains constant, there will be fewer trade con-
nections between the banks and their clients, which leads
to smaller avalanches in the evolution of the financial net-
work. On the other hand, if the total amount of trade is
assumed to grow, following the rise in minimum capital,
the probability of greater avalanches will also increase to
the level where it was before or even to a higher level.

The scale-free topology of the economic network plays
a major role in the determination of the size distribution
of the avalanches. At the same time, the scale-free topol-
ogy emerges naturally from the rules introduced, which
are motivated by economic reasoning, namely the princi-
ples of demand and supply. Still, one could argue that for
bank regulation purposes, a different (imposed) topology
for the connections between financial agents would help to
prevent large crises. For example, if the economic network
is structured as a random Erdös-Rényi network [29], in
which every economic agent has the same probability of
being chosen to form an economic connection, the system

would not have avalanches. In such a model, since connec-
tions are equally distributed throughout the system, all
agents would have statistically the same balance. In other
words, for each bankruptcy the expected number of child
bankruptcies in the avalanche would have either zero size
or the size of the system. Thus, with Erdös-Rényi topol-
ogy, one expects still the danger of triggering such a large
chain of insolvencies able to collapse the entire system.

Directives more oriented to the connection topology
emerging in the financial network could be a good alterna-
tive. Interestingly, although controversial, our claims point
in the direction of IMF reports in November 2010 [30],
where it is argued that rapid growth in emerging eco-
nomic periods can be followed by financial crises, and also
to recent theoretical studies on the risk of interbank mar-
kets [31,32]. Indeed the recent IMF Memorandum on Por-
tuguese economic policy [33] already includes directives
that reveal IMF’s concern not only with tuning capital
buffers and other local properties but also with monitoring
the banking system as a whole, and in particular keeping
track of the financial situation of the largest banks in the
network. We believe that such global networking measures
are much more trustworthy than local ones.
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