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ON MODULES AND RINGS WITH OPERATORS

ay

A. ALMEIDA COSTA

1) Summary and references— The questions contained
in this paper are of some different kinds. In § 2 (modules
with operators), we detail some properties of the absolute
of a module, which carry on to theorem 4, where may be
found a general definition of semi-linear transformation.
In § 3, the writer only applies the former ideas to irre-
ducible rings. Except theorem 5, we have no other own
proposition. It follows § 4, which concerns rings with
operators. One of the fundamental ideas exposed there
is the notion of maximal operator domain; the defini-
tions of admissible ideals of a ring are given in a some
what different way. From the theorems of § 5, the second
part of theorem 14 gives the inversion, in very general
conditions, of a well known theorem. Lemma 1, already
given by the writer in [238], enables us to give a common
proof of a property (theorem 15) common to many radicals.
There are also two propositions on the theory of repre-
sentations. In § 6 (on simple rings), we may note theo-
rem 19, which shows that a ring %, non zero-ring and
with an operator domain, is simple if, and only if, it is
simple without operators. § 7 deals with some ques-
tions on non associative algebra. We can maintain the
same notion of maximal operator domain. The center of
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a naring (non-associative ring) may be defined as the set
of those elements which are operators and commute with
all the elements of the ring. Theorem 19 of § 6 is then exten-
ded to simple narings (theorem 26). The purpose of § 8
is the theory of discrete direct sums. It prepares the theory
of semisimple modules. We study some propositions of
Nakavama-Azvvaya, [9], simplifying and continuing our
former paper [24]. In § 9 we continue the theory of semi-
simple modules, already contained in author’s paper [30].
We simplify some proofs of this work and we give very
general propositions, like theorem 83, lemma 2, theorems
25 and 39, which are very useful when applied under
more restritive conditions, [4], [84]. At last we give some
important corrections to [30], related with theorem 40.
We may note that, with respect to the simplification, we
could only indicate that the proofs of pgs. 289-240 of [32]
are entirely carried over the more general semisimple
modules, To Lowic’'s proof (pg. 241 of the same book),
contained in [38], we can give the same extension.
We did so, to compare the propositions and proofs
of [30] with those ones. On modules with respect to semi-
simple noetherian rings, we give some theorems, besides
lemma 2 and theorem 35. The former are true extensions of
well known Weppersuen-ArTiv theorems. In § 10, we return
to irreducible rings. After theorems 41 and 42, we consi-
der modules with respect to division rings 3, which
are a case of semisimple modules. We prove the simple
property, that @ and @ are reciprocal commutators in the
absolute of the module, when 1& is the identity endomor-
phism, not only in a direct way, but also with use of corol-
lary 10 of theorem 31. The methods are essentialy those
of [3] and [29]. We give for theorem 45, of N. Jacossox, a
formulation closely analogous to other of ArTin-WaareLes,
[29, pgs. 93]. Theorems 46 and 47 are obtained with proofs
which, at last, are indebted to C. CuevaiLey. The proofs
already in [24] have led to an important theorem of
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N. Jacomsox, then called CHEvaLLEY-Jacorson's theorem.
§ 11, the last one, concerns closed rings, for which we
analyse two possible definitions. Theorem 50 may be
considered a generalization of this one: if M =202 is a
module over 3, where 1¢2 is the unitary operator of M,
then 3 and B are reciprocal commutators in the absolute
of #. From this we can deduce a theory analogous to the
one of § 10 (modules over division rings), for which we
can give theorem 51: if ¥ is a noetherian simple ring of
endomorphisms of a module, to which belongs the iden-
tity endomorphism, then ¥ and ¥ are reciprocal commu-
tators in the absolute of the module. The proof of this
theorem can be given directly or by the use of corollary
10 of theorem 31. At last we give a theorem on a very
special class of simple rings.

As to the references, we give only the ones not
contained in [30]: [30] - A, Aumeina Costa, Uber die unter-
direkten Modulnsummen, this Revue, vol. II, 1952, pgs.
115-160; [29]-E. Arriv and G. Wharies, The theory of
simple rings, « American Journal of Mathematics», vol. LXV,
1943, pgs. 87-107; [32]-N. Jacossow, Lectures in Abstract
Algebra, vol. 11, 1958 ; [88]- H. Liwic, Uber die Dimension
linearer Riwme, «Studia Mathematicas», vol. 5, 1934, pgs.
18-23; [34]- A. Awvriva Costa, Somas sub-directas de mo-
dulos, modulos semi-simples, sub-modulos-G, «Anais da
Faculdade de Ciéncias do Portos, vol. XXXVIIL, 1953;
(85]-A. A. Avserr, On Jordan algebras of linear trans-

Sormations, «Transactions of the American Mathematical
Societys, vol. 59, 1946.

2) Modules with operators — Let 31— fx,9,2,.--] be
a module with Q= |}, u,v,0,p,0,7,...| as operator
m.oﬁmmn. Then, for each xe# and 1eQ, there exists a
single-valued function 3 such that: 1) xle M; 2) (x+y)i=
=4+ yi. Each operator induces an endomorphism of #.
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We will denote by E, the-image of # in the absolute 2
of the endomorphisms; by 2, the image set of &, and by
€ (Q;) or L, the subring generated by & in 2.

As it is easily seen, the notions of Q-submodule and
Q-submodule are equivalent. Also the Q-submodules are
,-submodules. In fact, if m is an Q-submodule, for each
xem, we have

(@0 ) Yo =((%E) Ey) ---) Euw==%E, Ey +++ Euem,
H_HMHH.U.:W.....WN HMHHmﬁ.&Mﬂ.:m&mE“

where 24+ FE.E;-.. E:, with a finite number of summands,
is the general element of the subring ,, and the last sum
belongs to m as it happens to each summand.

The Q-endomorphisms of M are also &—or Q,—endo-
morphisms and inversely. That is: & and 2, have the
same commutator in &, If the commutator of the set @
of endomorphisms be denoted by €, we have the
following

Tueorem 1:  [f B s a Q-module it is also a L-module,
as it has the same set of submodules. The Q-endomorphisms
of B are the O -endomorphisms and by that the commutator

0, = O, is the set of Q-endomorphisms.

In the following we will note, generally, by 4,8,C,.-,
S,---,X,..-, the elements of &. Each change in notation
will be carefully noted.

Consider any isomorphism B =#' between two mo-
dules, in which xe¢# and &' e¥' are corresponding ele-
ments (in symbols: x-+x). To some 4, endomorphism
of M, for which x-=x4, we may correlate an ', endo-
morphism of #', such that #' > &' 4'=(xA4). Then & and &,
the absolutes of # and ', respectively, are isomorphic
rings.
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Let us suppose now that the modules are U-isomor-
phic, that is, they admit the same operator domain £,
whose images in 3 and &' are Qp.and Q, respectively.’
This Q-isomorphism implies x- 20 =xF,, X' = (xw) =
= ¥'w=x'F}, and the image of £, in the mmoﬂo%imﬁ
A=2', is the endomorphism £.. We have therefore 28,
2E A EL . We will say that the Q-isomorphism denoted
by # =’ is admissible with respect to the image sets Q,
and ;. It is also admissible with respect to 0, and (!,
and, generally, with respect to any two corresponding
systems of endomorphisms in the isomorphism A=’
I'his isomorphism continues each one of the following

ring isomorphisms: Q,=0{; 0.-0: §.-8. The last
1somorphism is, in its turn, a continuation of Q=0
This proves:

 Tuoren 2: I B and B are isomorphic modules, this
isomorphism is admissible with respect to any two systems
of corresponding endomorphisms in the isomorphic absolu-
tes: A=A, Any O-isomorphism of the modules is an admis-
sible isomorphism, with respect to 0, 0], subrings generated
by Qo, % dn the absolutes 3,2, respectively. fie

As a special case, let.us think S as an automorphism
of #. We have M ~#'—MS—=M. As we have already
seen, it defines the following correspondences: x -/,
x4~ 4. But now we have #' =25, and, consequently,
A+ (xA)S=2'A=(xS) A, that is 4S=SA4', or 4'=5-145.
The automorphism is an admissible one with respect to
the endomorphisms 4 and 4'= S-'.45, which are corres-
ponding elements in the inner automorphism 3~ S-135—
=3=2 of the absolute &,

If 5is an O-automorphism, in the same way as in theo-
rem 2, we deduce that the correspondences x-2/, v.4 -1 4
include xEu~+'EL, where Ei— S-'E, S, as for 4. But as
FEy = xw =+ #'w = ¥Ew = ¥'El,, by hypothesis, we have




10 A, Almeida Costa

Ei=FEs. The inner automorphism, which .S defines, lets
invariant the elements of 0y and those of O, and trans-
‘forms the commutator 8, 0 () —S-10, S—10,, that is left
globally invariant, though the same does not happen to
each element. More precisely : as we have E;,=S1F, S=
— SE, 57, it follows that, if TeL,, it is also S-1TSe,
and STS-'e4,, Given Te{,, there exist XeQ, and Yel,
such that S XS5=T and SYS5'=T; we may take
X=5T5" and ¥Y=5-'TS. Thus we can say that
0,20, is left globally invariant in the automorphism 5.
Let be ZeQ,: for each Tel,, we have ZT=T2Z. For
T=5'XS5S, (Xel,), we have S ZS. T =525.
SXS =512 KXS5=51X75=51X5 . S-'"ZS5=T. 5128
and then 5'7ZSe mq. In the same way 525! mmx. At last,
whatever may be Fe m: there exists /7 eQ, such that
S-WS=V"; we may take W =SVS-\. Then we have
the following .

Tueorem 3: Let B be a module and S an automor phism
of . Then the mapping S of W onto itself is always
admissible with respect to A and S5-'AS, corresponding
elements in the inner automorphism of X which is defined
by 5. If 5 is an Q-automorphism, the elements of the
tmage set Oy, as those of the subring Q,, are left inva-
riant by 5. The latler is always an S-aulomorphism, if 5,
subring of A, is the commutator of 5.

Sometimes we can express the first part of the theo-
rem by saying: every automorphism S of a module is a
semi-linear transformation with respect to the absolute A,
This semi-linear transformation is an usual linear one,
with respect to 2. We have:

Tueorem 4: If 5 is an automorphism of a module, S is
a semi-linear transformation with respect to every subset of
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the absolute whick is left globally invariant by the inner
automorphism defined by S or, at last, which contains, the
images of ils elements by the automorphism: S is a lincar
transformation with respect to every subset of the absolute,
whose elements are left invariant by S (that is: to every
subset contained in the commuitator aof S).

CorovLary 1: If S is an Q-automorphism o f the module
B, 5 is @ semi-linear transformation with respect to O, and
Y, and a linear transformation with respect to Q

e

) Application to the irreducible ideal rings — The mo-
dule 8= (0) is always irreducible, whatever may be the
operator ring 8= Q. ¥ - (0) is B-irreducible if its B-sub-
modules are only (0) and 3. We will su ppose that the pro-
duct Jue® acts according to the rule %(hp)=(x))p. As the
image setof ®,in &, is By=2,, we can say that 3 is ¥,~irre-
ducible if it is B-irreducible, We say that B is closed if

B, =2, that is, if %, e &, are reciprocal commutators
in &, [9].

An drreducible ring B is defined as an endomorphism
ring of a module 3, which satisfies the two conditions :
1) # is faithful; 2) M is R-irreducible. Generally, if # is
BRirreducible, # is not irreducible, but &, is irreducible.
B =(0) is always irreducible. When & #(0) is-irreducible,
we have always BB MR, -~ (0), if B is concretized by &,
in the absolute & of 3. More clearly, for each 0=t xeill
we have xB—# because the set of the elements xeifl
annihilated by % is an ®-submodule distinct from 3. More
generally, if v is a right ideal of 3, xr=£(0) implies xr=3u.

Let us suppose that the irreducible ring # has a mi-
nimal right ideal r. If 31 is a faithful module, we have
Bre=(0). If xpe3 is such that %t 5= (0), we may consider
the correspondence » - x,7, where rer. It is an R-isomor-
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phism and, as xr=2, it follows that # is #-isomorphic
to every minimal right ideal of 8. Then the minimal right
ideals are isomorphic to each other and isomorphic to each
module in .whose absolute we can concretize &, [9], [26].

Let us take #=v, [{ 2 and 3’ are their absolutes, the
isomorphism & =3’ continues the isomorphism 3 =%/
where ®' is the image subring of B in &, Then, we may
suppose that r is an #-module, which concretizes the irre-
ducible ring . If, in particular, it is #=r, let us take xer
such that xr=5(0). The isomorphism »-=xr,(rer), already
considered, shows that there is some 7 er such that
xo¥ = xg, x#'*=2x. The images of ' and #* are the
same and then # =#'%. The element #'=¢ is a non-null
idempotent of r. The irreducible rings with minimal
right ideals are called, in [9], trreducible ideal rings.

As every idempotent of a minimal regular ideal is a
primitive one, [(I), pgs. 18-19], every minimal right ideal
of an irreducible ideal ring can be generated by a primi-
tive idempotent. For such a ring 8, let 8, and #;, be two
concretizations of # in the absolutes A and &' of two
modules ¥ and ¥, As ¥ and #' are #-isomorphic, we
know, by theorem 2, that to the isomorphism ¥ =3" we
can give the following meaning, [5],[26]: x+—2/, 2R — 'R/,
xD %D, if ReB, and R'eR, are the images of the same
element pe®, and De®, =D and D'eB, =1 are corres-
ponding elements in the isomorphism 2 =2’ Clearly,
8 and 7' are division rings.

As we can use the theorems 8 and 4, we vill prove
the following

Tueorem 5:  Let B be an irreducible ideal ring with two
concretizations B, and B, in the absolute X of some module Bl
There are elements wer (a minimal right ideal of 8),
whose correspondents rer, and v ex, (where v, and 1, are
the fmages of t) are different elements. Given pelh, we
will take xp=2xR and xp==xR' for each concretization.
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Let us suppose that we have always »=+'and that 0= x.em
satisfies apr=mr,=xr,=M. For every xe¥, we have
x=sxop=xor = xy#', (r'=r). Then, it is xp=(2op)p=
= % (pop). As smper, it follows xp=2x(pot) = 2 (rR)=
=, (#R"), and thus xKX=xF', for every x and g, which
is absurd.

Let us suppose r=r,=x1, =M, r=r.=x =33, and
consider .5, automorphism of #, by which xr- a7,
X~ xR, as we see in the scheme

r o x e rR xR
4 fr me I -
S g N PR s PR

As we have (x#) S= 27, (%*R) S=air ' =(xor . S) K,
we conclude RS =SR, or R'=S5-'RS. Then S gives a
correspondence between the two image rings of 8 in &.
The following proposition holds: Let 3 be a module
whose absolute contains two concretizations, B, and %,
of an irreducible ideal ring B. If the isomorphism %, =%,
determines the correspondence R+ @', there exists S,
automorphism of M, by which x+xS=4x', I'=51RS,
that 18, x—+2/, 2R +{xR)S=4'F'"

In the terminology of theorem 8, we can give the
following addendum: The automorphism S is an admis-
sible one with respect to the commutators 3 and ¥, which
are in correspondence in the absoclute, such that, if
D-+D=571D5, also 2D »xD5=x5D =+,

Jacowson, [5], gives a proposition for the hypothesis
D'—13. By the theorem 4, we conclude that S is a semi-
-linear transformation with respect to D.

4) Rings with operators—Let 5=|a,b,¢,d,---,7,5,4,7,--- |
be a ring with an operator domain 2={},u,v,0,p,3,7,--- |.
Besides properties 1) awe; 2) (a+d)n=aw+ bw; already
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accepted for the module %, [§ 2], we have also: 8) (ab)n=
=(aw)b=a(bw). By & we also mean the absolute of %
and by & the commutator of some set @ of endomorphisms
contained in . Also &, and Q, will have the same mea-
ning of § 2.

We will denote by £, Ef?,... the images, in 2, of
the endomorphisms induced by s,#,--- €%, when they
are used as right multipliers-in &, and by EY, £, .
the images, in &, of the endomorphisms induced by
$,¢,-.- €%, when used as left multipliers in %. The set
of the £, (s %), is a ring 5,, homomorphic image of %,
and the set of the E?, (se %), is also a ring &, anti-homo-
morphic of 5. :

From (ab))= (aE{") E, =(a})b = (aE,) ES?, (ab)s =
= (bE E, = a(bl)=(bE,) EY, we conclude that ,<5,,
0,28, and, by that, ¢, <%,0 5§, On the other hand, sa- =
=(aE" EP —s.at—=(aE") EP shows that 5,€ %, 5,cF,.
The product %, % = %;%,, does not contain, generally, the

Ty

factors. Let T =(%, %) be the subring of & generated
by &, and &. We have T=%, n ¥ and consequently 0,£T,
We may note that 2, ET is a consequence of 3). Therefore
the :Pm T acts as a maximal operator domain of &. Those
elements se %, which may act as operators, are characte-
rized by the property E{?¢T and they form a subring 8,
of . We have then:

Tueorem 6: For the ring B, with operator domain Q,
we can verify the following properties in the absolute of its

module: O, SF_n 5=, [ , S5, FWML. and & 1s the ma-
ximal operator domain of 5. se ¥ satisfies EVe €, if, and
only if, seB(SH), subring whose elements t satisfy the
relations (xy) t = (xt)y = x (yt), with arbitrary x,ye 5.

CoroLLaRY .m" If & is a zero-ring (82 =(0)), its maximal

operator domain is the absolute. We have A—=T 5, %,
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This is an immediate consequence of the following equa-
lities: &, =(0)=5,.

Obviously, the center 3, of 5, is contained in the
subring 8, and 3,£T. Also, we may note that we have
ET=TTcE, %0585, %0c #, and, consequently,
5€ch,, §5Tcy,

Let s,5'¢® be given and let us consider the commu-
tator [ss']=ss'—s's. For every ae %, we have a[ss']=0.
If there exists some a which is not a zero left-divisor,
we conclude [ss']=0, that is, the commutativity of &,
Generally, a[ss']=0, only implies the commutativity of 8,.

Let us consider =%, For every xe%, we have
x=2aa, with a,a’e%. For T,T"' T, we have (aa')(TT "=
=(@T)(@T)=(a-aT)T"=(al")(a'T)= (aa'y(T'T), and,
consequently, x(77")=x(7'T). T is then a commutative

ring and the same is true for every operator domain 2,
Then:

Tueorem 7: [f & is such that =5, its operator domain
acts in a commutative way; and if % has not left sero-divi-
sors, the subring 8 is a commutative one.

Let us suppose now that there exists an identity ne¥%.
The image of «, in &, is the identity endomorphism. It is
easily seen that & and % are reciprocal commutators
in 3. We know that $,£¥,. If ce is such that (ba)s—
=(bs)a, for b=u we have as=(us)a—ca—ak", where
us=ceZ. Then ce %, and consequently %5, % —%,
Then & =3%=5, and we have Q,T =% %,. The appli-
cation of every operator is equivalent to the application
of the same element of the ring in each side. In fact, if
we put g=u in al=ba=ac, we have b=¢, and, for
every a € ¥, ab=ba, which shows that $e3, This proves:
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Tueorem 8: In a ring with identity, the cenler is the
maximal operator domain, and has in the absolute the image
5,n5;. Such ring is closed.

The last -hypothesis about L is the mczc.._,...mum. one.

Let & be a ring, L, its operator domain and € the maxi-
mal operator domain. Let us suppose that :¢@ is the
identity of €. For every’ se¢¥, we hdve s=s: |
+ s{1—:), where 1 is the identity endomorphism. The
set of the elements s: is an £,-ideal, as we see from the
equalities: g.sc=(as)z, s:-a=(sa):, s:- E,=5-¢£;, =
=sFE, .:=(s)):, because :e&. We can say the same
about the set of elements s—s:. Then 2=5%: 1 %(1—:)
is a direct sum of two ideals.

Tueorem 9: [t is a necessary and sufficient condition
to be i==1, that ©.A= AT E(0), for every 0= Ae®. If
¢=1, then 4&T.4 and ¥ .4--(0). Conversely, if, for every
A0, is ©A=L(0), as T(1—:)=T:(1—:)=(0) and 1—:eT,
we have 1—:=0 or :=1. We can give another formula-
tion of this theorem.

Turorem 10: [t is a necessary and sufficient condition
for :=1, that ¥ does not have absolule sero-divisors (that
is, elements a==0 such that ax=xa=0 jfor every xe¥), [85].
If :==1, a0 is not an absolute zero divisor, because
we would have a®=(0), ae=a=0. Conversely, let be

= 4eT. There exists xe% such that x40, As x4 is
not an absolute zero divisor, we have (x.A)T=(xT) A 5=(0).
Then ©.4=-(0) and :=1, by theorem 9.

By the former considerations, we can understand
easily the meaning of the admissible right ideal, gene-
rated by a set of elements of %, whatever may be the
operator domain 2, We have:
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Tueorem 11:  The right ideal ()., generated by a, is the
set of elements of 8 of the form a(2+1E,...EuEY. .. EfM=
—=a(S+1EY ... EPE, ... E)y=a®(1,2,,5,). In this nota-
tion, 1 is the identity endomorphism of # and X has only
a finite number of summands. In particular, we have, in
(@), a(l)=a, a(—1)=—a, a(14 ---+1)=ma, aEMN=as,
af,=al, a_ﬁhu,__m.mau_”ﬁn”&h”?&y and also (((@})g)---)w=
=a(E, £y --- Eu). More generally, we can say:

Tueorem 12: The right ideal of B generated by €=
=\|a,b,e,---, a&,b'¢,-- |EF is the sef of elements of B
of the form a(Zt1E,...Ea ES .. EMY 4+ ... 42 Zx1 Ey---
o E- EN LV ESY, where there is a Sfinite number of XX,
each one with a finite nuwmber of summands,

With respect to two-sided ideals, we can give the
following

Tueorem 13:  The ideal (a), generated by a, is the sef of
elements with the form aw (1,9, %, 5)=a6(1,9,,T).

We may note the following: from s.al=sE" =
—(sa)i=sE'E,, we conclude L_m.m.u_"ﬁh;.m,ﬁ and hence
we have 21 EP ... EMEVE Ey ... E:=+1E" ...
o EPEREy - BEe=t1EP . EP Efly oo E:, and so
on. But it seems preferable to maintain the notation used
in theorems 11 and 12. A second note may be this: if r
is a right ideal, the ideal t* can be obtained without the
use of operators. And a left ideal of the form %a is always
an admissible one (as @%) because ¥a=a%;, (%4)0, =
=(a%;)0, S ak,.

We can now give in a simple way the notion of «root»
of a ring, as it is used in the theory of the classical radi-
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cal: @ is a root in the ring with operators &, if (a), =
=ag(1,L,,5,) is a nilpotent right ideal.

A last note is that one: if there exists an identity,
we have (a),=a6(%,)=al,, (g)=a€(g)=ag=al, 5=
HHMM_—Wﬁ.

5) Some general theorems— As we have already seen,
if & is an associative ring with any operator domain Q,
the left ideal generated by the idempotent ¢ is Se=¢%,.
The ring of Z-endomorphisms of %e¢ is isomorphic to eZe.
The Z-endomorphisms are also Q-endomorphisms. If e%e
is a division ring, it follows, from a general property of
endomorphisms with inverse, that every Z-endomorphism
of Z¢ is an automorphism. In correlation, we have the
following

Tueorem 14: [If Ze has no nilpolent admissible left
ideal of 2, and, for each O=taeBe, is Ba=t(0), then He
is mintmal, if, and only if, eSe is a division ring. If Se is
(%,2)-minimal, the ring of its (%,Q2)-endomorphisms, or
S-endomorphisms, is a division ring. Conversely, if eS¢
is a division ring, and 0==ae5¢, as e¢fe.2%aSeFa, we
conclude that the left ideal e¢%a of e¢%¢ satisfies one of
the following equalities: ¢3a=(0) or eZa—eBe¢, If ¢5a=(0),
it would be #¢Za=(0), and, consequently, ($4F=(0) and
Sa=(0), which iz absurd. Then we have efa=—¢5e,
Gefg—=12¢Ze=25¢S5%q, which shows that ¢ is minimal,
[Be=23a].

An useful consequence is the following: In a ring
without nilpotent ideals, ¢ is minimal if, and only if,
e%e is a division ring. In fact, for a=£0, we have Sa==(0),
because Za=(0) implies that there exists an admissible
ideal a==(0), such that Za=(0).
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Evidently, we have an analogue of theorem 14, and its
consequence, for the minimal right ideal ¢%. An obvious
consequence is that in a ring without nilpotent ideal,
if ¢ is a minimal left ideal, then ¢% is a minimal right
ideal, [8, pgs. 13].

If we call semi-simple ring, with respect to some radi-
cal, any ring whose radical is the null ideal, we can
speak of semi-simple rings in the sense of Levitzxi,
Korue, Jacoeson and Brown-McCov, for instance, (Cf. [I,
Cap. I] and [23], [25], [26], [27]). Also the upper radical
of Baer, [28, pgs. 104), denoted by #, is such that
5/B has the null ideal as the upper radical. In those semi-
simple rings and in those rings with N=(0), we can use
Theorem 14 and its consequences. A property common
to & and the others radicals is the following one (in which
W denotes any of those radicals):

Tueorem 15:  [# is a necessary and sufficient condition
Sfor ae®W, that aS=W, This is a consequence of the
following

Lewma 12 If ¥ be an admissible ideal such that /3 has no
admissible nilpotent ideal, then ae ¥, if, and only if, a5 ¥,

Evidently, this is a necessary condition. Conversely,
let ¥ be a ring with the operator domain © and let us
suppose aXS¥. If r is the right ideal (a),, generated by a,
the ideal 1* is the set of elements 3 a'a", as it was already
referred. Then we have r*Sa%cp, If v’ is the image of r in
the homomerphism % ~ 5/%, we have r'? — (0}, '=(0), and
consequently rtS¥, ce.

In the sequence of the general considerations of this
paragraph, we will study a subject connected with the
representation theory, [(I), Cap. VIII, pgs. 222-228].
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For a given module 3, let ¥ and 3 be two right ope-
rator rings such that # is an %-module and B-module.
The image sets of ® and &, in the absolute 3, will be
denoted (as it is our general use) by &, and &,. We will
say that 3 is a double right (%, %)-module if %, cR,, and,
consequently, R,c%,, If 8 has a faithful representation
in &(R=%,), the image ring %, is said a direct represen-
tation of & in &, and M is the representation module.
Generally, however, ¥, is a direct representation of
in ®,. For veM, ae?, 2eR, we have the exchange law
vE.E, =vE,E,;, or va-l=vl-a.

If % has an operator domain 252, the direct repre-
sentation is said admissible, if we have also, for pell,
E..=FE,E;. This product makes sense, but though £,
and FE, are elements of #,, we cannot say the same
about E:. With respect to the representation module,
we have v . ap=va.pg=w;-a, together with the general
relation #a . i==v) . a. These relations are sufficient (with
a short extension of the notion of admissible represen-
tation) to give an admissible representation of the O-ring
5, (Re®), in B,. Let us suppose that ME=WS =
For v e # we have then v=2m; - E,,, with m; e, F, eX,.
It will be m.im..my“m.._”%nu..m_n..u m.m A= Z prd »m.n_m".w%wm“__. m_n..nm.u.,_"
= Zm; E,) E,—v)E,, Consequently, we have 2£; K, =
—oF, E;, that is, E;e®,. If ® has a faithful representa-
tion in &, we have pl=1s, and 2 is contained in the
center of 8. We have then

Theorem 16: Let & be an Q-ring. If & has an admissi-
ble representation in B, the lypothesis QSR and WS=H41,
implies O, S8, N8, , whick is the center of B,. And, if B has
a concretisation tn X, Q is confained in the cenler of B.

Let us study now the finite representations. This
signifies that the representation module is finite over &,
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i. e, it is of the form M=wu, B4 ... 4+ 4,8, where we
suppose that ® has an identity, which is the unitary ope-
rator of the module, and the w; are a Z-independent basis
of #. As B is an anti-isomorphic ring of B, (full matrix
ring over B), the direct representation of %, that we have
considered in a general way, can be substituted by a

reciprocal one by matrices of ®,. To ae % will correspond
the matrix 4eZ®,, defined by

£
i ”.M.M_ ujzy, A=(zi), ayel,

If there exists an operator domain QSR and the
representation 1s admissible, we will have the corres-
pondence a—+.4, as—~ A, as it follows from

i
i @p=t; Egp =, E, Ey=( 2 ;) E,

et = w4 (2jig) .

7

Let us consider next the converse hypothesis, We
know that the Q-ring %, (Q £%), has a reciprocal repre-
sentation by matrices in ®,, by which a- 4, ap—+.Ap
Thinking in the module # — 4, 8 | ... + u, B, we put F.
correspondence the matrices 4 and 4; with R-endomor-
phisms, represented by £, and E,., respectively.

Em, have not necessarily E,,—F£,E,, as for v—
=2 u;);, we have the following equalities : v.ap=
e W.HHL...“_ _mmﬂ.h (267 - g)dy ".M. #;50); and

i LT )

va-p= 2wk a)p=2 a1y,
r,d

that show that, in general, v . ay=tva.5. Corresponding
to this result, let us consider, if possible, a change of
_umm.mm in @, e. g, (w,-,un)=(uy, -, 4,). P, where P is
an invertible matrix. The matrices -t 4P and P! (An P
induce in the new basis the same endomorphisms £,
and £.;. Generally, however, it is P-1(4y) P= (Pt AP,
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differently from what happens in the first basis. But we
have this

Tueorem 17: To every finite module over B of an
admissible representation, tn B, of an Q-ring B, (U8,
corresponds an admissible representation by finite matrices,
and, conversely, if B, is commutative, (or, at least, Q, is
contained in center of B,), the existence of the last one
representation carries the existence of the first one, and,
therefore, the existence of the corvespondent representation
module.

6) On simple rings — Let us begin by the study of a
simple zero-ring without operators. Then ¥ is a commu-
tative ring because ab=ba-=0 for every @ and 4. The
ideal generated by #=£0 has the form |ma|, where m is
an integer. Then % =|ma/|, and for every £a -0, there
iz an integer » such that a=—#-fa. From (rk—1)a=0,
we conclude that 2=0,a,2a,...,(g—1)a| is a finite
group and the finite characteristic ¢ is a prime number.
The absolute & of the endomorphisms of %, all &-endo-
morphisms, is the commutator of 0ed, which is the
image of &. More precisely, 3 is the field //(g), where /
is the ring of integers.

Let us suppose that ¥, also a zero-ring, is simple
with respect to an operator domain £, with an element
which does not induce the null endomorphism. Every
{Q-submodule is an ideal, and ¥ is an Q-simple module.
Every element of the absolute can be considered as an ope-
rator, as we have seen in § 4. & is a ,-simple module.
The commutator of L,, or of every subring of X contai-
ning {,, is a division ring. Consequently, the commutator
of 3 (the center of 3) is a field. If 22, ==(0), the structure

|
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of & is given by the relation &=gaL,. When £ is a com-
mutative domain, &, is a commutative ring and is con-
tained in L,. For every 0 £ae%, and 0--.4eQ,, we have
aAd 0. Taking Bel, and aB—abB,, with 5;eQ,, we
have B= /5, and 2,=0,. We have then:

Tueorew 18: [f 5 15 a sero ring, simple with respect to
a commutative operator domain L2, the commutator of ,55(0)
ts .. From this theorem and the result for a void set ,
we conclude:

CoroLrary 3: Every Q-simple zero ring, where O is a
commutative domain, is a simple zero algebra over the field
Q,=0Q,. If Q is a void sef, the ring is a simple zero aloebra
over the absolute. Conversely: if 8 is a simple zero alvebra
over the field B, then is a B-simple sero ring with structure
H=aqalk, (0£aed).

Let us consider now the Q-simple rings ¥ which are
not zero rings. As 2% is an Q-ideal, we have ## =%, The
operator domain acts in a commutative way. £, is a com-
mutative ring and ,=T n Q,.. For every 0=~ae %, we have
al ==(0), because if %, =(0)=a%, there would be an
admissible ideal a=~(0) such that s%—(0), and conse-
quently we would have 2 =(0). As g% =%, we see that
% is always a simple ring, with or without operators.
@ is irreducible and its commutator @ (a commutative
ring) is a field. For no one =0 we will have aF, =0,
with £, 5-0. We have then:

Tueorem 19: Let & be a ring, not zéro ring. % is
Q-simple, if, and only if, 3 is simple when considered
without operators. An Q-simple ring, not zero ring, is a
simple algebra (not zero algebra) over its maximal operator
domain, and, consequently, over any field which may be con-
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sidered an operator domain of the ring, if the unity acls
as an unttary operator. Consequently :

CoroLLary 4:  Lef @ be an algebra over B (not zero alge-
bra). B is simple algebra, if, and only if, D is a simple ring
(not sere ring) without operators.

Let us continue the same set of hypotheses on Z.
The center 3 is an operator domain. ¢==0, (ce3), is not
a zero divisor, because if ca=0, (a==0), there would be
a non null two sided annihilator of ¢, and consequently
¢%=(0}, which is impossible. 3 has then a faithful repre-
sentation in © and it is a subfield of @, as we can also
see directly. For every Os=ce 3, we have ¢5=2, and conse-
quently the equation ex=¢', (¢'e3), has a solution x¢%.
We will show that xe3. Let us take some a¢ 2 and let y
be such that ¢y =a. Then we have ra=xey = cxy =cy=
= y¢'= yex = cyx = ax, and x¢ 3. The identity of 3, repre-
sented by the identity endomorphism of €, is the identity
of &, From the former theorem, we can give the following

Tueoren 20: Every Q-simple ring, not zero ring, with
a center 3 ==(0), is a simple algebra over ils center. The
identity of X is the identity of the ring. We have also

CoroLrary 5: .An Q-simple ring, not sero ring, has
tdentity, if, and anly if, its center 3 is =+(0).

Let us study now the finite direct sums of simple
rings, such that the products of two different summands
are null. Those rings & can be considered as generated
by a finite number of simple ideals a;. Let then be
S=u + --- + 0y, With w;0;=(0), for =57, In [(I), pgs. 26-27],
we have given some propositions on this question, with
some complements in [(I), pgs. 30-31], when ¥ has an
identity. Independently of the existence of the identity,
we can make the following remarks. Let us consider &
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as a module over the operator domain €: % will be com-
pletely reducible. For a two-sided ideal # we can write
=8+ @€, where €=u; +..-+n;, with §,a;,==(0),
(f=1,2,::,7), Let bbby iv 4 by, (brew), be the
decomposition of 05=6e8. For every s=s -+ .- + s;e ¥,
we have bs=bisi + ... +- b5y, sb=51b1+ ... L 5,8,. As
bs,sbe@, we see that, if 055b.en; belongs to the decom-
position of be8, also & s, s b:, (ssewn), belong to the
decomposition of another elements of 8. If there is one
byp==0, n; is the set of all 4, because this set is a two-
-sided ideal of the simple ring n,. We shall see now that,
for each (0)s&|4i|=m, we have aS8. In fact, it is
m 8 —=ni=ua.E8. For the decomposition of % given before,
there are the summands n; S8, whose direct sum gives 8,
and the others, for which ;n#=(0). We have then
M—th.@lnl.ﬁ. B=0a,,+ oo, €=g; L ... + n;, . More
shortly:

Throrew 21: Let & be a direct sum of a finite number
of two-sided simple ideals, S—ay + ... L u,. Then, for a
two-sided ideal 8, we have 5=8 + €, where B is the sum
of all a; such that Bna;—uw;, and € is the sum of those u;
for whick 8 nn; = (0), [33].

CoroLLary 6: On conditions o f theorem 21, & has an
unique decomposition, or, as it is the same, the two-sided
simple ideals of & are only those of the unique decomposi-
tion. Though this proposition seems less general than the
one given in [(I), pgs. 30], we have to remember that
there we have assumed the existence of identity in %.

7) On non-associalive rings — A non-associative ring
(naring) is a ring in which fails only the associativity
of the product. It is, therefore, a module, whose elements
are both right and left operators. Let £=|a,b,-..,7, s,:.-,
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x,7,--- | be a naring. If there exists an operator domain 2,
we W wﬂ suppose that the elements of { act on ¥, accor-
dingly the properties 1), 2), 8) of § 4. In the absolute 3,
of £, we may also consider the associative subrings Q,,
% %, etc. The subring &(Z,,%) will be represented
by @. As in the associative case, we have the relations
a=2%n%,0:5@; and @ may be considered the maximal
operator domain, because xe® implies (xy)z— (x EY)) 2=
”»H&h%;“ﬁnﬁ..“ﬁam,w:u_ﬁ =(ya) EP=x(y4). In Jaconsox,
(4], @ is called multiplication ring of ¥ and @ the multipli-
cation centralizer of X. Here, we have, evidently, ¥ &%,
¥, %3 but 008 =00<®, and, in particular,
Q,0—00,20, In fact, we have x. EM a=(za)a=2x ga=
=xED, x. hmf“?&?“?&&”&hﬁ. and, by that, it
is, more precisely, ®%,=%,, @ X, X;. The elements se ¥,
which may act as operators, are characterised by the
_uudﬁ_mﬂﬁw E"e®, and they form a subring # of %, Really,
let s,5'¢E be aiepl bk EY, Efe®, Then, if E¥=

m..E.m.E_ we will have hEmE but this is immediate,
rmnmzmm % - 55’ =(x5") s =/{(xs)s'. Besides, we may write
ENEDN=FDEP, For the difference s— ¢, the conclusion
iz the same. At last, 8 iz an associative ring, and its
image #,c@ is an associative and commutative ring.
We have:

Tueorem 22:  Let X be a naring with operator domain Q.
In the absolute &, of its module, we have O, 5%, n F;—0., @
is the maximal operator domain of X; se X satisfies E' €@,
if, and only if, s belongs to the associative subring B2 X
characterized by the relations (xy)s=/(xs)y=x(ys), with
arbitrary x, y e X; at last, the image 8, =X n QA of B,
is an associative and commutative ring. (X7 is the set of
endomorphisms induced by the right multiplications by
the elements of ¥].
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 We call cenfer 2 of X the set of elements of 8 which
commute with every element of ¥. It is an associative
and commutative subring of #, and we have 3,58, 5@,
We will see that 3, and %, are right ideals of @. At first,
we have #,Qc %'Qc X, 8,0c®, and then 8,8c%, n01—38,.
For 3,, it is Pﬁm&l and if ce3, nm_ﬁu the relations
X o= %€ x==¢X.x=¢x.Xx prove that ¢« commutes with
every element of £. We may also observe that the homo-
morphic correspondence s+ £!”, of # onto 8,, is admis-

sible with respect to @, It contains the correspondence
3-3,. Then:

Tueorem 253:  The center 3 of a naving X is an associa-
tive and commutative subring of B, associative ring of
theoreme 22, 3, and 8, are right ideals of W, and the corres-
pondences 3-+3,, B8, are Q-homomarphisms.

When a naring verifies ¥ =¥, the centralizer @ is an

associative commutative ring, as the ring @ of § 4.
The meaning of ¥* is the usual. We have:

Turorew 24: If X is a naring such that =2, every
operator domain acts of commutative way. In particular,
the multiplication centralizer is commutative.

If we® is an identity, €3, evidently. Whatever may
be the operator domain 2, the application of  or #) gives
the same result; then #le®. We have seen also that )
commutes with every element of ¥. Consequently ule3,
and this signifies that the image 3, contains all the pos-
sible operator domains. The existence of » implies also
the relations X,£%;, ¥ <X&,; for example, if BeX, we
have u~uB=>6, x=xu-xB—=(xu)B=uE" B=(uB)EY=

= bEN — xh ﬂa.m.haf and then B "h%.u. We cannot prove
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the equality ¥,— %, because, on the contrary of the
associative case, it is not ¥,2%,. We have the

Turorem 25: In a naring ¥ with identity, the center 3,
maximal operator domain, has in the absolute the image
W-."%ﬁ"@"wﬁﬂ_wwmuﬂuﬂcﬂ_;

A last hypothesis, about 2, is analogous to that one
of § 4, which led to theorems 9 and 10. We may make
the same assertions here. It is suitable to note that
EF—%:1 X(1—:¢) is also a decomposition in two-sided
ideals.

The notion of admissible right ideal of ¥, generated
by the element g, is the same as in the associative case,
It is the set of elements a@(1,2Q,,%,). The two-sided ideal
generated by & is the set a@(1,%L,,0). The expression
a ¥ is not an admissible right ideal. The right ideal gene-
rated by a& is e X,, which is an admissible ideal. A right
ideal r, of ¥, will be an Q-subgroup which, with every
aér contains a@(L,,&,). The ideal r* may be defined as
the set of elements of the form Z[aa'(Z+1E... EFY],
where @,a'er and the two 22X have a finite number of
summands. It will be the right ideal generated by the
elements ea. In this sense, we may define a product
rr’, of two right ideals, as the right ideal generated by
the elements »#/, with rer, rer’. It will be r?Sr, rt'Sx,
but there will be a great dissymetry with the associative
case, because the elements of ' cannot take the form
2. Opportunely, we had already interpreted a two-si-
ded ideal = as an Q-subgroup which, with every e,
contains a @ (2, ,®), If 2 is the void set, o is a submodule
with the property s@S«a. #* is always a two-sided ideal.
It may be conceived as the set of elements of the form
Ztt,(t,f'eX), whether 2 be void or not. If there exists
weX,ae(1,2,,%)=aX, is the right ideal generated
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by a. The characteristic property of a right ideal r is to
be a sub-module, which, with every a, contains aZ,.

About idempotents, we limit our considerations to a
simple remark. Let feX be an idempotent. The left ideal
f#:, generated by f, is a (¥, 2,)-submodule. Its ¥;-endo-
morphisms are (¥;,Q,)-endomorphisms, because, given
the X;-endomorphism defined by the correspondence
f~fAY,(A%eZF), we have f=ff=fEP.fA9ED—
= fA°, fE, = () E, = fEP Ey = fEf} ~ f 4" Ef} —
=(fANEPE, =fA"E, .

Let ‘us consider now some details relative to simple
narings. As they cannot be zero-rings, it will be ¥*=3%.
The multiplication centralizer @ is commutative. b.m_.on
the other hand, ¥ is (®,%Q,)-simple, if we put P=e(@,0,),
% will be ¥-simple. Then ¥=@nQ, is a division ring,
consequently a field, at the same time that, as @ is
commutative, it will be also 2, commutative, and @, 9.
For every 0==ae X, we have a® =~(0), as in the associa-
tive case. Really, the hypothesis a @ =(0) will imply, if
6@ = (0), the relation (@ — 5)® =(0), together with
(a@)Q=(0), (aQ,) 0 =(a®)Q, =(0). We would have 30 —
=(0), and, in particular, # = (0). And we may conclude
the equality a®@=Z, because a®=~(0) is an admissible
two-sided ideal. The (@, 2,)-simplicity implies the ®-sim-
plicity, and conversely. Then:

Tueoren 26: If X is an Q-simple naring, it is also a
simple naring without operators. An 0 simple naving is a
non-associative algebra over every field, which may be con-
siderved an operator domain of the ring, if the unity of the
field acls as unitary operator of ¥. Consequently :

CoroLiary T: Let 8 be a non-associative algebra over & .
D is a simple algebra, if, and only if, B is a simple ring
without operators.
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We have already said that the center 3 is an operator
domain. If 0=t¢ce3, we know that cQ@ =X, AscQ)=¢ZF,—
=c¢¥—c¢¥, we have ¢X¥=2Z, Then, if we suppose that
the center is ==(0), theorem 23 permits to write 3,=@.
In this case, 3, is a faithful representation of 3, and, con-
sequently, the center is a field.

Besides, we may deduce the same in a direct way, as
we have done for the associative rings. The reasonings
which gave the relation ax=uxa, for every solution of
cx=¢,(c,c'e3), are valid. Next, the verification of (af) x=
—(ax)b=a(bx), with a,beZ, may be carried on in the
following way: writing a=s¢, besides xc=¢, we have
(@byx=1(sc -Bx=(sb-c)x=3b.-2c=3b.-/=35c 0=
=(s-xc)b=(sc-x)b=ax-b; and if we suppose =1,
besides cx=1¢', we see that (ablx=(a-l)x=(at-c)x=
=gl . xc=at.d=a-l'=a-. (¢ ze)=a(le-x)=a- bx.The
identity of 3, as is represented by the unitary endomor-
phism, is also the identity of £. We have:

Tueoren 27: Every Q-simple naring X with a center
3-=(0), ts a simple algebra over its center. The identily
of 3 is the identity of X. The image 3, is, then, the multi-
plication centraliser.

CororLary 81 Awn Q-simple naring has identity, if, and
only if, its center 3 is == (0).

We can prove directly that 132 is the identity of ¥:
ascX¥=3%, forevery0z=ced, we have s =¢t, la=1-¢i=
=1-fe=cl=x=2x1,(xeZ). :

A last note on simple rings is the following one. If &
is a non-associative simple algebra, over 8, the hypothe-
sis 3=5(0) implies, by corollary 8, the existence of 1e3.
Then, the maximal operator domain of 3 is its center,
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and, thus, as the identity of # is unitary operator, we
can suppose £53 a subfield of the field 3. Then:

Tueoren 28: Let 8 be a non-associative simple algebra
over 8. 8 has identily, if, and only if, its center 3 contains
the field &,

We will finish this § by the consideration of a naring ¥
which may be written in the form 2=3%, + ... + &, where
the & are simple narings, for which x;x;—0, (i=5/, x,e X,
xj€&;).  becomes decomposed in a sum of simple two-
-sided ideals, and as the proofs which led to theorem
21 and its corollary & are valid, we have the same

propositions. In this case, as 322 ¥ — X, it is also ¥*— %.

For the maximal operator domain of ¥, which is the mul-
tiplication centralizer ®, we have the relations X,® < %,

as we conclude in sequel. It is %*.ﬁw:mw”%:%mﬁmwr

ﬂrﬁ...wm“. #®@=2Z%;; on the other hand, as ®® = ®, we have
FQQ=X0=%0=3;. We may state the following

Tuzorem 291 Given a naring X, divect sum of a finite
number of simple narings, of the form X=% + ... 4 &,,
we can say: 1) * does not contain two-sided simple ideals,
besides the ¥;: 2) for every two-sided ideal 8, of X, we
have always =8 4+ @, where 8 is the sum of the %, Jor
which 8nX,—3;, and © is the sum of the X; such that
B0 E;=(0); 8) every operator domain of ¥ acts in a
commutative way, and it is an operator domain of every
%;, [35].

8) On the theory of the discrete direct sums—In the
following, M will be a set of elements «,f, .-« 4, p,v,---,
every one being putted in correspondence with a module:
p—=my. We will suppose that the operator domain, common
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to the my, is a ring ®, which may not be «immersed» in
the several rings of endomorphisms, but has, in those
rings, homomorphic images [(I), pgs. 2381 and following

Besides the discrete direet sum ¥ =—Zm, (ve W), 1t
will interest us the ring R of its #-endomorphisms. Let

us take of  a set |.4,|. This set is called summable, [9],
if, for every xe®, it is x4 =0, except for a finite num-
ber of A, .4, . Then we may consider 2.4 as a well deter-
mined endomorphism. Given xe ¥, let us write x=m, +
4+ ..+ m:, where m,em,, etc. Every x is decomposed
into a finite number of summands. The correspondence
x -, is an endomorphism £, — F,, e®. Every endomor-
phism E,. is idempotent, and the products Eu E,, (x5,
are null. The endomorphism 1e® has the expression
1=232FE,,(pe M), precisely because |E;| is a summable
set. When |4 | is summable, hold the distributive equa-
lities (EA)B=Z24 8B, B(ZA)=2B8BA4,. We may say,
in the only sense of sum of modules: the ving B, of B-en-
domorphisms, of the discrete divect sum WM=2Im, (velM),
of modules w, (all B-modules), on the lypothesis H”Mm..«:
(pe M), is complete direct sum of the right ideals E.%

Every element 4 ¢® appears as a sum of a summable mmﬁ
of the form A=23FE. A4, with E; 4e E;%. On the other

side, an expression of 4, of the considered form, is uni-
que; really, if we put A=2F, Ay, (A; € B), we define an
endomorphism .4 such that E, 4=F, 4,, and then its
representation is given by A=2F; 4.

Let us take an arbitrary endomorphism Se&.We
have S= _qu S)-2E,=2lE mﬁmxlfpm SE:

ﬁmh_?mm,i noting that Em two last mmﬁqmm.ﬂcnm carry
Es7

to the same result S, when they are applied to every
xe¥, Such result proceeds from a finite number of sum-
mands E;SE,, exactly the same in the two expressions.
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Putting S;;=E.SE e E;BE_, we see that every endo-

morphism SeZ has an expression of the form 3 S,
B2
where the set |S:.| is summable. Conversely, every sum-

mable set |S:s| defines an endomorphism S= X S.,, with
- m._ﬂ
E, SEg=25,;. We may say, in the only sense of sum of

modules: the ring B is special subdirect sum of the rings
EaBEg=28, (c¢fr. [30, § 2]). The elements of the subdirect
sum are the summable sets of elements in the several B,

If we write £;SE;=FE; - E.SE;. E: and note that
£;SE; defines a well determined homomorphism m. ~m; S
Sms, which will be represented by 7.:, we see also that
S=2FE;6:E:,(,5e¢ M), where figure certain s:. Con-
versely, given a system of s, we can prolong every
wcﬁo%ﬂ.ﬁ_ﬂmuu in order to form an endomorphism of #,
namely £.c;E;. If the set of these is summable, we
obtain a well determined S — 3 E;a35 E:. Then:

Tueorew 801 There is a complete 1—1 corvespondence

between every SeR and every system of homomorphisms =u:

such that the set |E.s5:E;| of endomorphisms of B is
summable.

Clearly, we have B.p8s, S8, %ﬁmwm@ﬁ"ﬁmu.. if f=4.
m__ﬂn;ﬂm_ .WHM.m.mq. m_...”MH..wFu it is § -} H"M_ﬂrm.mu IT.H..nL...
as well as _ )

MH-HM.W.U.H .M Hluc.llu.m.h 5a M‘:vFuIM_MmeHIvH_

7.0 F F.4 ..__._

— W ..m_..uu mﬂ.._n_"__..“ ¥ ._mm.;_.- .S_d.ﬁ.m.." hu..m__n._.._. Jql-m-..ﬂ ....-.1F|
Fa Ty Foie

Though there is a complete 1—1 correspondence bet-
ween the elements of .5 and the homomorphisms Tafty
determined by the relations S,3~0,5, such that m, S, ;=
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=m, T, (m,em,); sp-F 6,F;=5,, we cannot say
that B.g is the ring of the homomorphisms m, ~ mfs S mg,

because it has not sense to speak of the product of two
such homomorphisms.

Let us consider, however, the ring $... Its interpre-
tation, as ring of the B-endomorphisms of m,, results
from the 1—1 correspondence refered before, and the
following considerations. We have

Tty _”,m..ns - mp:gau = My mﬂﬂs + Tux)y
#g San Taw = _..,uﬁn .Wq.ﬂu_ Tiz= (922 nnsu_ Tmy = Mz Tax Tan,

and 5,,=0, if 5., = 0. Then: given a discrete direct sum
¥ —=Zm,, the ring R.,—F,BE, and the ring of the
B-endomorphisms of the submodule m. are isomorphic.

Let us suppose, next, that, in the decomposition
#— Zmy, all the submodules are #-isomorphic to a fixed
module m. Holds the following proposition, [9]: given the
discrete direct sum ¥ — Zmy, (ne M), of B-modules, B-iso-
morphic to a fixed module m, the ring ®, of the R-endo-
morphisms of ¥, is isomorphic to the ring of all the
(transfinite) matrices, with M dimensions, formed by
summable rows of B-endomorphisms belonging to the
commutator #' of the image of ¥ in the ring of endomor-
phisms of m. For the demonstration, we will treat four
preparatory questions,

In the first place: the sum and the product of two
matrices of summable rows, with elements of &, are

matrices of summable rows with elements of &', The
proposition relative to the sum is trivial. We will treat
only the case of the product. An element of the product
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is of the form tov =22, L., (2,v fixed; = o1 B e BY). The
sum is well defined, vmnmcmm. taking Lem, in the p-row
there is only a TEHW number of values of ¢ such that
Zz,,5=0. Then it is also necessary to use cmq a finite

ucE_uE. of f,,, and the application of 7u tO the element &

is well determined. Let us study, next, the x-row of the
product. The question is to see that the set of the y,,,
(v fixed, ve M), is summable. Let us take again Eem.
To every veM, corresponds, as we have said already,
a sum-

dug Favt - Fangfyy, (a,---,76M fized), (1)

It matters to verify that, if » becomes different, only a
finite member of the former sums does not carry to zero,
when applied to 2. Let us write the different sums (1):
[ 1= - ]

Fng pegy T I_I,H_c._w“uﬂv.w .R»__.:r:u.u. + ...N_F.ﬂr.a_.u.w LS _"H.m.,"

Considered the element £z, em, only a finite number
of elements fq,, fazy--- may carry to Eaugfu; =03 -.-; the
same holds to Zaus,---, Zzu,. To the last one, only a
mE:m u:E_uE. of elements F.f, Bgqy -+ may carry to
g gy 5= 07---. Then, only a finite number of sums (2)
annuls m_ msa Em first question is treated.

In the second place: on the conditions of the propo-

sition to prove, the ring & has a system of unity Emﬁlnmm
E;., for which, by definition, By Eg=—Ey, B E,,

if ¢==2. We have seen already that there are muao_so_.-
m;.:m_.:m E; = Ey such that 1=_Z2E.. The remaining unity
matrices are formed in the following way. Let us repre-
sent by 7, the isomorphism m~m, =m+s,. The isomorphism

m, =m, results from the relations m, s-'=m, mp =m,

o

=, 37'5,. We will put, therefore, 4, =:-15_, for repre-

A

senting the isomorphism, well determined, which carries
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from m; to m . Next, it will be £, 4, _ 7, . We see imme-
diately that £, E, =F,,, £, E,,=0, as we have said.

E, A, gives a particular example of the extension of a

homomorphism m, ~m,, represented before by s,,. And
the second question is so finished.

In the third place: on the conditions of the proposi-
tion to prove, if we write, as in the general case, 5=2 S,
we have Suy=— FEus Slv, with Si=2 E,, SE.. It is imme-

=

diate that S\ has sense, with the definition given before.
Z..WN—“_ it wﬂ s.-.ul.._...._ .m.m..._.w.“.wu .m.,.u.s__ .m.ﬁ_.._. .m.hm..._xﬂm_.._.mrrm.‘m.ﬁ” .m.._....._u N.Hw_nm
k.

the third question is treated.

In the fourth place: the set of the elements Si., forms
a ring independent of the ¢ and v, which is isomorphic

to ® or to E,® E,, whatever = may be. Fixed «, let us
make to correspond 2 £ AE.—= A to every element
#

AeB,,. We see that, fixed ¢ and v, we have
Mhm.x.ﬂ .NHHP#”M .m.x"u ﬁhm._...rﬂ K“._m.hm.u‘vu_m...x.. ._“Wu
The first member is independent of p and », and the

second shows that it is an element S... Conversely, given
an element Si., we have always

..m.T._.“M..Hm.NT ;m.Hm...._NH.MLm.NR + Lm.u.ﬂ _”m.ﬁ._.‘. .mm_.hﬂu.m_ﬁn # »...I._“..Mx..-
= £
whence we conclude that Sy has the form of the first
member of (3), that is, it corresponds to an element

A—=FEun (Exy SEw) Ezz. This correspondence is 1—1,
because the equation in 4,

BE S Fama Fo A Eo (A eBra),

L]
%
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has a well determined solution. Indeed, if we multiply
the two members by K., at the right or at the left, we
obtain Es: S Ew = Eax A Ezz—= 4. Denoting by 2’ the set
of the Su, it remains to prove the ring-isomorphism

B, =3 For example, if 4, BeBas, we have = £y A BE—

=E2FnAEw - 2 FEwuBFE., and the assertion is immediate,
k. 7

At last, let us consider the proposition. As every Se®
has the form S=:-Z Eu, Su, (x,ve M), and the ring &, of
the 5., is independent of ¢ and », we conclude that R is
a complete ring of matrices with elements of & If we
consider a row of elements S, (¢ fixed; ve M), the cor-
responding ones in E.BE,.=% are of the form 4=
=L (Ea SEn)Ea = Esu S Ew. It remains to prove
that, for every sz ems, only a finite number of the former
AA carries to a result ==0. Now, as m, is fixed, ma £su S
is determined. If we put w. E,u S =mi + .- +m), it is
enough to consider, in the expressions of the 4.4, the
values v=g,..-,5, as we want. The proposition is proved.

Constructed £ and %', the modules 3 and m admit,
respectively, those rings as operator domains. They are
closed domains, in the sense defined in § 3.

Here it is an important proposition :

Tueorew 81: Given a ring B, fet m be a fized Bi-mo-
dule, and let us suppose M =Zwy  (we W), a discrete direct
sum_(finite or fufinite) of modules wa Bi-isomorphic fo m.
If B is the commutator of the image R of By, in the abso-
lute of B, the ring B, of the B-endomorphisms of 8, or
commutator of B in that absolute, has always the same struc-

ture, namely: the struciure of the ring 8, commutator of
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the commutator B of the image &, of By, in the absolute u,

of m. I Oe®, let us study its application to m.. It Esmﬁ
be sty = miu O, sp =1y Epp = iu h.p_,_m_I.Em,ﬁ.h_e,flﬁt.m.,mgf
because © commutes, in particular, with all the Fo.
Then ©, within wy, is an endomorphism 9,. Accordingly
reasonings of § 2, in the isomorphism a=1,, of the abso-
lutes of m and wmy, we will have 0, =f6ea. As 8., commu-
tator of the image #., of #,, in a., may be written
By=F.B E,, and as © commutes with every En Sk, it
follows that 9. commutes with these elements, and
fu e Bu. It will be fe¥E. In this way, to every @ e R corres-
ponds a well determined element Je&. The element 9 is
independent of the index 4, as we will conclude, noting
that, if the isomorphism mu =m, carries s, into m,, it car-
ries also ., © into #. 0. Now we have myu 0 - (my 0) A=
= (t1p ©) Lo Apy= (20, O) B =110 E) O=(m10 Aps) =1, 0.

As for the isomorphism Z~%, the conclusion is now
immediate,

CororLary 9: If © is a B-endomorphism which applies
a submaodule mu info (0), then @ =0,

CoroLrary 10: [f w is a Bi-module, B-closed, EVEry
discrefe direct sum of modules Bi-isomorphic fo m is a
Ri-module, Bi-closed,

We will finish this § with a proof of the following
theorem, which simplifies that one of [24,§ 12, theorem 53].

Tueorem 82: In the sum M=Zm,., of modules isomor-
phic, refered in theorem 31, there is a complete 1—1 corves-
pondence between the B-submodules of B and the B-submao-

dules m. Let ¥ be a H-submodule of 3. By the homomor-
phisms 3 - m, , are defined homomorphisms #1 ~n. =<1 F, .
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We see that n,S3. Then #=2Zu,. By m,, we define
m, %, =uEm. We will recognize the two following pro-
perties of n: 1) u is H-submodule; 2) n is independent of
the index p. Let us make p=«. To prove 1), it is enough
to verify that n, £, & £, Sn,, which is immediate because
L E.RE — nr,. L_m.,sw By = m—.m.u..ww EENE, <n,, With
respect to 2), we must verify the equality DEuopt =

Hﬁhqﬁ__ﬂ:mﬁmm,ﬁh Yn 9, =H8E,. The first member
represents ﬁhsuflﬁhﬁlﬁhfm.:mm_.ﬁ As, in the
same way, W Eu SUE,, it is B Ev Eun S0 Eyy Eu, that is,
B E,SUE,,, Therefore, 8 Ep,=N E,, as we want. Conver-
sely, let us take u, supposed #-submodule. We have
B, =0T, I>t,=n3=n, 5 o=un A, =, m.. Ay
=mn, £,,. Next, let us construct #—=3u,. The a:am:ou
is to see that # is H-submodule. Fmﬂ us take 5=
=X E.SE &R, For applying S to ¥, we have to apply S
to every m.. But, then, it is enough to apply to mu the
several Lm_fm,ﬁ; (x fixed, v arbitrary). We have n, £, SE,=
=tp Ey SEy . EusSmp Epy=n,. We see that we do not go
out from # when we apply to it any Se®. The theorem
1s now immediate,

%) On semi-simple modules —We will begin this § by
some different proofs of lemma 17, theorem 88 and corol-
lary 4 of [80, pgs. 146-148]. They are propositions on
semi-simple modules B with the ring of operators &,

Let C be the set of the simple submodules of the
semi-simple module #: C— |ma,mg,---,m,,-.-[. Let S be
the set of all direct discrete sums of the submodules of C.
It will be S= |my,mg, om0, o s +mg, -, 2, , ...} in
which we suppose that mu=-mg. The set S is a partially
ordered set. Let 7 be an ordered subset of S. There
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exists the join element of T which is the direct discrete
sum of all m, which belong to the sums of 7. [It is easily
seen that in the maximal element of 7, as in every ele-
ment of 7, if the finite sum w4y 4+ --- 4, =0,
My €My, ete.,, we have my=my= ... =m, =0]. T is then
an inductive set [23, § 5], and by Zorx's principle there
exists a maximal element 2w, in 5. And, consequently,
we have #=2Zm,, because, if we could have m, ¢~ Zm,, the
direct discrete sum m,; + Zm, will contain Zm,, which,
consequently, would not be a maximal element. Conver-
sely, if M=—=2m, (as a direct discrete sum), where the m,
are simple, ¥ iz semi-simple. And the already referred
lemma 17 is the following: 3 is semi-simple if, and only
if, we can give to ¥ the form #=2wm,(ve M), as a direct
discrete sum of simple submodules w,.

With respect to the theorem 38, let us suppose # a
semi-simple module. Let 1 == be a submodule of # and
let us consider the simple submodules m,, mg,---, of ¥,
not contained in #. Clearly, # is generated by # and by
the submodules. Let vus take S as the following set of
discrete direct sums: S= 3,8 + my, ... T4+ Zmy,...|.
Similarly to the proof of the preceding lemma, we have
a maximal element in S, such that #—2t + Im,, and
we have M =1 4 W' with #'=2wm,. Conversely, let us
suppose that for every ¥ we have a &' such that #—1l .
4 3, As ¥ iz isomorphic to a subdirect sum of subdirec-
tly irreducible modules mu, by the homomorphism - m,
we have m, =3 #, and as for #, we have ¥, such that
W, + B, If for every u, Bl = (0), we have ¥ —3l,,
m, = (0}, BM=(0). If WM-L(0), there are some . ==(0)
subdirectly irreducible and, as they have the same pro-
perty of 3, the 3, are simple. Let us consider the direct
discrete sum 3 of all simple submodules of 3, We have
M=%, W' We will show #" is the null module.
Ag W' has the same property of 3, 3" is the null mo-
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dule or 3" contains simple submodules which is absurd.
Hence we have: M is semi-simple if, and only if, for
every submodule ¥, we can find a submodule #' such
that ¥ =11 + &',

To corollary 4 of [30] we can give the following form:
let be given to the semi-simple module ¥ the form
M= XEm,, where the m, are simple; then, in the decompo-
sition for %, W= L W' we can write ' as a direct dis-
crete sum of some m,. The proof can be carried away as
in the former propositions, using only those m,, not con-
tained in 3, which belong to the decomposition Xm,,

Let be M =2m, (veM), and B =3Zn; (jelN), two
decompositions of # as direct discrete sums of simple
modules "y and ;. We will prove that: the sets 3 and NV
have the same cardinality, [32], [38]. The proof is the
following one: if one of the sets (M or N) is a finite one,
the same hapens to the other and they have the same
cardinal. Let us then suppose that the two sets are infi-
nite and that # is an S-module. Then we have m, =
= (e, + &, 3|, W= nf; + f;8], where m n are integers
and O==e,em, 0= fren;, For ¢, we have the decomposi-
tion &= fi+ -+ fu+ fisi+ --- + fise, where the
n#n are integers and the ss operators of &, In the decom-
position of all ¢, we use all f;, because, f, does not
belong to the decompositions of all ¢,, as we have f,—
=Mg€s+ --- + Wi+ €aly + --- 4 & &, where the mm are
integers and the #f operators of %, the substitution of
the decompositions of the &,, .- ,¢ in the f, shows that
the sum Zu; would not be a direct discrete one. Given
jedN, we take f; and the ¢, whose decompositions con-
tain f;. Then, for every j, we can consider the set
\hypy---{C M of the indices v of the referred e. By the
ZervEeLo's axiom, we can obtain a selector © that for each j




43 A, Almeida Costa

gives an v=0()e M. Then ®(N)= M < M. Let us con-
sider now the fanction j=©-!(v). For each », we can
obtain some j such that ©(j)=v, but it is easily seen
that the number of those j is a finite one. We have then
obtained a 1—1 correspondence between the elements
of M' and the finite disjoint subsets O-'(s)c V. As the
cardinality of the set of the @(:) is the same as the one
of V, we see that M’ and N have the same cardinality.
Changing the roles of M and WV, we see also that M and
a subset N'C /N have the same cardinality. Then M
and /V have the same cardinality.

The following theorem is an useful one, when used
under more restrictive conditions:

Turoren 88: Lef W be a semi-simple module and let
Wy be an B-submodule such that M, 4;=8,, for the n
F-endomorphisms Ay, .-, Ay; then we can write W, =@, 4
+ Wy, where Wy is annihilated by the A; and 8, 4;= 1, .
Let be ¥ the kernel of the endomorphism #, ~ 3, 4,,
We have 3, =% + 8y, For ¥ —(#{,W 4,), we have
P A4 =9, because M, 4, =] 4,, W, 4, 4, =W, 4,,

VA A S8 A =8 4,. But, as ¥ 28], we have I, =
=P 4N, and, as { =P, n A + O, we obtain B, —
=\ o) 40, + N/ =P, L 0, with &cH, o .d=(0),
Then, if #=1, we have 0 =0,6 8 =% . We will conti-
nue the proof by induction. Let us suppose the theorem
true for 1 —1 and let be B, =@, , 1 N, the decomposi-
tion, where @, is annihilated by the 4; and ¥, 4, <
EU. 4, (j=1,2,---,#—1). If £is the kernel of the homo-
morphism @,,~®,,4,, we have @, ,—Z L &. As
$24,=(0),84,=0,,4,, we have M=% 4+T|¥,,,
with £ A;=(0), (j=1,2,..-,n), and ¥, 4,=(& + CLIY I P
The submodule ¥ =({T+,.1), (T+H,1) 4y, -, (T4, 1) A,
satisfies to ¥ 4; £ ¥, because, for instance, (T+U,_) 4. 4;=
=3, 4, 4; = |, nﬁ.___."mﬁ = HPTHM__\#.{ As P=#, and P2T +
+ ¥y, we have ¥=PnL + &+ ¥, and I=¥PnL L ®,
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W=PnL+O® L g4, =P+, The theorem is then
proved taking ®, = ® 3, =¥, because ®<I gives
04, =(0)

CoroLLARY 11: Lef de A, ---, A, L-endomorphisms of
the semi-simple module B, We have M=0 L 0, where O
is annthilated by the A; and N 4;=

An important example of semi-simple H-module is
every module 3 with a noetherian semi-simple ring of
operators ¥, where 1eZ% acts as the identity endomor-
phism of 5. The decomposition S=r, 4 ... +r,, where
the T; are simple right ideals, gives m=m.1—=me +
+ --- +me,, where e;er;, ei=¢;, ¢;6.=0, (j== £). The
correspondence r; - mr; is the null homomorphism or an
isomorphism, and, in the decomposition of s the non-
-null summands belong to the simple submodules of the
form s ;. M is then generated by its simple submodules
and is a semi-simple %-module. When 1 does not act as
the identity endomorphism, the decomposition #—# 1 W
referred above is also true for every submodule 3 where 1
acts as the identity endomorphism as we see from the
decomposition of ¥ in two submodules #' and 3", where
B has 1 as identity endomorphism and " is the sub-
module whose elements are annihilated by %. Then, as
ey, W—U 1%, we have =8+ (Z -8 =212
It follows:

Tueorew 84: Let B be a noetherian semisimple ring
and ¥ an B-module. Every submodule N where 1 acts as the
identity endomorphism is a summand of a direct decompo-
sition WM=14 4 &',

As we have seen, a necessary condition for % to be
noetherian semi-simple is that every Z-module may be
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written as a direct sum of the submodule annihilated
by & and a semi-simple Z-submodule. O. GoLumany, [9],
proved the converse proposition. The essential part of
this proof is to show the existence of the unity. Then the
use of the hypothesis in the ring % gives the desired
result, (cfr. [34, § 6]).

LI 5

To the semi-simple modules with respect to a noethe-
rian semi-simple ring of endomorphisms %, containing
the identity, we can apply theorem 33, under a different
feature, for which we need

Lemma 2: Let B be a module in whose absolute there
exists a woetherian semi-simple ring of endomorphisms &
containing the identity, If Ae3 is such that M4 is gene-
rated by a finite wuwmber of simple B-submodules, every
S-submodule ¥y can be writta as Wy =0, + N0,, where B, iy
anntitlaled by A and W, is also an S-submodule gencrated
by a finite number of simple submodules.

With the notations of theorem 23 (with 4, =4), as
W, A=1{4 is generated by a finite number of simple
submodules, we can find 4,4, ---,4 634 such that
WM A=WA=HTF + ... - 4,2, and also y,---, y, € &/ such
that y; A=#,(j=1,2,..-,xn). For every xe#,, we have
xA=yA=2fks;, (yeili,s;e8), and, then, rd=94=
= Z(y:.A)s;=(2y:5) A. Then the difference z—=x—Zy;5;
belongs to #} and x=25 + Zy,4; is the decomposition of x

according to the one of B, =¥ L W}, W=y, 54+ ... 44,5
is, consequently, finitely generated. The lemma has been
proved, by setting @, = 8, 2, — A},

As in theorem 33, we can continue and obtain ¥, =
= (U7, 4) and O, if we suppose that M, 4= M, This
condition is verified if we apply this lemma to the
module .
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Let 4,,---,.4, be Z-endomorphisms of ¥ such that
each 3 4, is generated by a finite number of simple
submodules and let us suppose also I, A, S 8l (i=
1,2,..-,1). If we have obtained the decomposition 3, =
=®, ,-%,,,as in theorem 38, we can write @, =%+ T,
where the submodule @ has a finite basis. As 3, has a
finite basis, ¥ has also a finite one. The decomposition
B, =9+ 0=m0, L A, verifies the

Theoren 85: Let W be a module in whose absolule theve
exists a noetherian semi-simple ring of endomorphisms &
containing the identity, If A, ,---, Aye & are transformations
such that every M A4, are generated by a finite number of
stmple B-submodules and such that for the B-submodule ¥,
we have W, A, W, (i=1,2,...,0), we have the decompo-
sifion By —0, + 3, , where Q, is annihilated by the A,
N, has a finite basis with respect to & and B, A; £ 3,

Let us suppose now that # is a noetherian simple
ring of operators of . If # is a non-trivial -module
(B = (0)), we can represent faithfully B in the ring of
endomorphisms of B, without making the hypothesis
that 1e® is unitary operator. But, if 162 acts as the
identity, we have ¥ —=2Zm,, (ue ), where the m, are
X-isomorphic, as they are ®-isomorphic of a simple right
ideal of #. We can then apply to 3 the following exten-
sion of the Il Theorem of Wepnersups-ArTin:

Theovew 86: The ring of B-endomorphisms of a mo-
diele 8 over a noetherian simple ving B, whose identity acts
as the identity endomorphism, is a complete ring of row-
-summable transfinite matrices over the division ring iso-
morphic to the ring of B-endomorphisms of a simple right
tdeal of B,

We can now give the structure theorem for the ring
of B-endomorphisms of a module # over a noetherian
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semi-simple ring ®. Let be # =23, 4 ... -3, the decom-
position of # in simple rings, under the hypothesis that
L &8 acts as the identity. We have then 3 — #3133, +
+ .-+ ¥, Let be F,(i=1,2,...,8, the projections
of # over the ¥, =MA;. We know that B=Z%;;, (i, /=
=1,2,---,4), with B;=F;B F;. As every M, is B-semi-
-simple and may be expressed as a direct discrete sum
of isomorphic modules, not isomorphic of the summands
of ;, =i, we will show that &,;=(0). The homomor-
phism #; ~ B;CW; carries every simple submodule of #
in (0). It carries, then, #; in (0) and %,; has only the zero
element. By that, we conclude that B=32%8;,(i=1,2,..., /.
As the structure of the 3; is given by the earlier theo-
rem, we can give the following proposition, which may
be considered as the extension of the I Theorem of
WEDDERBURN- ARTIN :

Tueorem 37: The ring of B-endomorphisms of a mo-
dule B over a noctherian semi-simple ring B, whose identity
acts as the tdenfity endomorphism, is isomorplic to a direct
sum of a finite number of complete matriz rings, like those
of the later theorem. The number of summands of R is the
mwmber of simple vings of the decomposition of B or the
number of systems of not isomorphic simple right ideals,

In correlation with the propositions already given, we
can give the following one [29]:

Tueorem 88: Let B be a ring with identity, which is
also the identity of B, a noetherian simple subring of %;
then R can be written R=Zuw 5, (veN), as a direct discrete
sum of the B-submodules w5, all S-isomorphic to 3, and
the order (B%) is the cardinality of N. As R is a module
in whose absolute the ring %, and, consequently, & are
faithfully represented, we have 8—=2m,, where the m, are
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Z-simple. For every 0z=wu~em,, we have my=—w. %, with
the w, Z-independent.

We can also obtain a stucture theorem for %, by
applying to 8=2Zw.,% a proposition given in § 8 and

using the fact that, as ¥ has identity, =%, is anti-
-isomorphic to B,

The following proposition is an useful one, specially
when used in some particular condition. Let # be a
module and & a noetherian semi-simple ring of endomor-
phisms, containing the identity. Let € be a subset of &
that generates in ¥ a nilpotent subring &,, whose expo-
nent is s,(T, =(0), " 5=(0)). For the S-submodule #, —
=MWT;" 54 (0), we have B,T,—(0) and B —m, + 3,
as ¥ is F-semi-simple. For every xe#, we have x— 1,
+m=xatx:, (meBly, KeB; «,:e5). I yeT,, it is
xy=wx:y, and, consequently, :y=7. We have also ¥,: =
={0). Then:

Tueorem 89: [f & is a noetherian semi-simple ring of
endomorphisms of a module B, containing the identity, and
if TWSE generates a nilpotent ring Ty in the absolule of W,
there exists an idempotent <€ % such that cy=y, Sor every

7 €T (or Ti), and the endomorphism = is not an automor-
plism.

A semi-simple module is sudirectly irreducible if, and
only if, it is simple [30, pgs, 134 and ff.]. As we have
referred in § 1 we will correct considerations of [80] in
correlation with the theory of subdirectly irreducible
modules. In [30, pg. 189}, we have given the following

Tueorem 40: Let B be an S-module and & be a comuta-
tive ring. It is a sufficient condition for the subdirect
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irreducibility of 8 that the following conditions be realized :
1) there exists an B-submodule L= |mxy+ 5,8 | 5£(0) whose
annihilator is A==5; 9) B/A is a field whose identity is the
identity operator of L; 3) £ and A are reciprocal annihila-
fors: 4) for each xe L, there exists De A such that 2D =x,.
Here we will correct the note which follows the proof of
this theorem in [80]. It is not necessary to exclude the
hypothesis A=(0). Actually, by 3), we have =3, which
excludes 4. After, we fall in the proposition: if # isa
module over the field ¥, whose identity is the identity
operator, and if 3 can be generated by only one element,
then # is F-simple. By the hypotesis A=(0), with the
exclusion of 8} and 4), it follows that £ is Z-irreducible,
but we have not proved the subdirect irreducibility of 3.
On the contrary, the decomposition ¥ =4+ MW" as in
theorem 54, shows that £E¥ iz a direct summand of the
semi-simple module ¥ and, consequently, a direct sum-
mand of M,

10) Some questions on irreducible rings — In the ques-
tions which we will treat, we will use the propositions
of the former §§.

When # is a module over the division ring @ whose
identity acts as the unitary operator, as @ is a noetherian
simple ring, we can write M=2%,3, (ze M), where the
#ne® and the submodules #. 3 are D-simple and, conse-
quently, isomorphic to 8.

Let us consider now that ¥, whose absolute is 3, is
A-irreducible. Obviously, & is irreducible, and we have
the following

Tueorew 41: B is drreducible with respect to the abso-
fute X, if, and only if, 2 conlains a prime field containing
the identity, [9].
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The necessity: As # is A.irreducible, its commutator
3 (the center of 3) is a field that contains a prime field.
The sufficiency: As there exists a prime field ¥4, we
may consider 3 as a ¥-module and we can wite ¥ -2, P,
(ze M), as direct discrete sum of simple and isomorphic
p-submodules [efr. 30, §§ 8 and 9]. As the commutator
of ¥, in the endomorphism ring of #.¥, is ¥, and as
there are not in the #. ¥ proper #-submodules, except (0),
theorem 32 shows that # is already ¥-irreducible.

Once proved the proposition we can give to the suffi-
ciency condition a more general formulation: Let & be
the absolute of ¥ and let us consider 8=2c2 the com-
mutator, in 3, of a field #=8 =3 containing the identity.
Then 3 is 8-irreducible and the ring # is also irreducible.

Let us suppose now that the division ring 3, of endo-
morphisms of ¥, contains the identity. As #=2u.3,
(we M), if @ is the center of B, then ¥ is A-irreducible
and ®-irreducible. As formely, we can prove that 3 is
D.irreducible. In fact, the non-null D-endomorphisms of
#x 8 are automorphisms constituting (with the null-endo-
morphism) a division ring ¥, anti-isomorphic to 8. We
can define a se®' by the correspondence #y—+uus=uud.
And we can write #u®-—=u,0" where de® and ce are
in the correspondence defined above. Then #,® has not
D'.submodules, except, the trivial ones, and # has not
D-submodules, except,also, the trivial ones. In a more direct
way, let be m==(0) a B-submodule of # and let x=wu,d.+
woodzi: ds==0 be an element of B, The D-endomorphism,
of M, which applies u.d, in #, 4, and #y, (p£4), in 0,
applies also x in #, d,. Then, for every fixed 1, we have
#, @5 m, and consequently, m=3#.

Let us suppose now that the absolute of ¥ has a
noetherian simple ring & of endomorphisms, where 1¢2
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is the identical endomorphism. By theorem 41, M is
A-irreducible, and, by the later §, we can write 3 = X m,,
(e M), where each my is Z-isomorphic of any minimal
right ideal of %. Evidently, # is not 5-irreducible (g is
not a division ring), and, consequently, if there exists
Z-submodules of 3, there exists also A-submodules of a
minimal right ideal ¢%, of &, where A is the division
ring of the Z-endomorphisms of ¢5. We have:

Tueorew 42: Let be X the absolute of W, If B2 i
the commutator, in X, of a simple noetherian ring % with
the identity of A, there is a 1—1 correspondence between
the B-submodules of B and the e 5 e-submodules o f a mini-
mal right ideal ¢%, of 3, The elements of eSe may be
considered as left operators of ¢%. We will show that &

and ¥ are reciprocal commutators.

It could be thought as a case different from the later
the case where we could find in 2 a simple ring ¥ with
minimal right ideals and identity, whose identity is also
the identity of 3. The considerations of [26, § 4] show
that this case is included in the later as % is a simple
noetherian ring, [4], [29].

We have, in this § noted that every module 3 over
a division ring @ is semi-simple. If # is a D-submodule,
there exists a submodule ¥’ such that =3 1L %' There
is always an idempotent & such that M EZ=3% and for
every xe3l' we have ¥’ E=0. If ¥ is finite over 8, let be
Yay Mg, -2, an independent basis for #, with M=
=Zue®,(neM). Then E=FE,+Es+..-+E, is an
idempotent of ¥ such that ME =U=WME +WMF, |
+ -+ 8L, with ME, —=w,8,... as the idempotents
E.,Eq, .-, E, are ortogonal. If # is infinite over D, the

finite linear transformations belonging to T constitute a
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two-sided ideal £, of A. This ideal is irreducible in 3
over 8. We may, then, consider the irreducible rings B,
subrings of T, different from 3, as 1é€.

To continue the study of modules over division rings,
we will prove the following simple property: if m=¢ D,
the division ring 3 is closed in the absolute a of m. In
fact, as @ and #% are -isomorphic, their absolutes are
isomorphic, and we may suppose that in the latter iso-
morphism the elements of ¥ are in correspondence. As 3
is a ring with identity, the right multiplications. of 3
constitute the ring 2 of endomorphisms which is the
reciprocal commutator of the ring @' of the left multipli-
cations of . We have =30 and '=9—2. And the

same can be said of 3, as the ring of endomorphisms
of 3.

Let us return, now, to the general question of a mo-
dule ¥ =22,0 over the division ring 8. Corollary 10,
of theorem 31, shows that we have §=212, that is, D is
closed in the absolute & of #. A direct proof of this can
be given. If @el, we know, from theorem 31, that @
induces a &.-endomorphism in #. ¥, which we will denote
by f.. We have proved that 6.=4du.eD. If we can show
that 4y is independent of p, the desired proof remains
established. With the notations of the theory of direct
discrete sums of isomorphic modules, we have wy Au, — u,
and a O=(uy Fu Ay ) O=(y Eur) O={110 O) E (1 0) Epye
- Aun“h __n___n_.u nm.,_.c_.._ = _H.n.m.ﬂum._.“....__u .D_._,_.- = m,m.__h_.. . ...H..U.mﬂ. n_...H _....__...._..u_ as we
desire.

A more direct method is given by Arrin-WhappLEs-

-Jacosson. Clearly, given B and 3, for every system of
elements #;,---, 4,6, D-independent, there exists always
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an AeT which applies the x; in 9;,(i=1,2,..-,¢), D-in-
dependent or not, (cfr. the notion of dense ring given
in [4]). Let us take ®eD and let be x- xO=y. For every
%, x and y are not D-independent. Because if v and y
could be independent, for some 4e¥ we could have
2d=x,yA=0, x-20=y, x=x4-(xA)0=(x0) 4=
=y.4 =0, which is an absurd. Then we have v -2 8=
= y=uxd, (deB). For every ze¥, we show that we also
have 5-50=zd. Let BeD be such that x8=z. Then
x-x0—=uxd, s=xB-+(28)0 =(x0) B=(xd) B=(xB)d =
= zd . We have the following

Tueor:w 43: Lef & be the absolute of W, To every
division 1ing contained in X, with the same identity of 3,
correspond different commutators, which arve ifrreducible
rings. And if B is d-irreducible, its center is a prime field.

If ® is an irreducible ring and D its commutator, 3=
—RBND is the center of B. If ® is closed, the common
center of # and D is the field 3. But, generally, B8n2%
=3ND. 2 is always a closed ring. It 2 is irreducible, we
have a special case of

Tueonzu 44: [f B=71 is closed irreducible ring, with
D as its commulalor, its center is the field InD,

When # is an irreducible ring of endomorphisms of a
module 3, every two-sided ideal a==10), of #, is also
irreducible. In fact, according Arriv-WaarpLes-]Jaconson,
we will show that, for every 0=xe¥l, there exists an
Hen such that x =1, forevery ye#l. Let be 0= den.
There exists 0==fe# such that s=¢4=0. If Be# is
such that xB3 =1#, we have xBA=t4d=z=z,; if Ce#is such
that 2C =y, we have sBAC=sC=y, and BACea. To
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give a proposition like the one of [29, theorem 4, pg. 93]
and of [4, theorem 3, pg. 951], we will prove that every ring 8,
closed and irreducible is an irreducible ideal ring, [4]. Let
us suppose 3 faithfully represented in the absolute A of
and let be @ = 2. By hypothesis, 8 is the set of all 8-endo-
morphisms of #. If 0s=xe# and we write ¥l — DU,
we will prove that the ideal 1S3 which annihilates 3’ is
a minimal right ideal. If 0==Bet and Cer' is any ele-
ment, we cannot have x8 =0, because, in that case, B
will annihilate 3, and, consequently, 5=0. Then, as
xB=-0, there exists De® such that xBD==xC, or
2(BD—C)=0, and BO—C=0, as BL)—Cer'. The equa-
lity € = B shows that ' is a minimal right ideal.

The proposition already referred is the following one,
which involves the considerations of this § and of § 3:

THeorev 45: Led B de a closed irreducible ring, Then
there exists a division ring B and a linear space ¥, over B,
in which 1ed aels as L unitary operator, such that B is
the set of all D-linear transformations of M; R can also be
Saithfully represented as the ring of all ¥'-linear transfor-
mations of a minimal right ideal ' where D' is the division
ring of B-endomorplisms of t'. Conversely, the set of
D-linear transformations of a linear space W, over the
division ring B, where 16D acls as the unitary operator, is
a closed irveducible ving B the linear space W is B-frredu-
ducible, and, consequently, is B-isomorpiic to every minimal
right ideal of B, and the division ring D is the sef of
B-endomorphisms of the linear space. From B, D and ¥
are well defined, apart isomorphisms.

We have seen that there exists irreducible rings
which are not closed. In the following considerations,
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B-2(0) will always be an arbitrary irreducible ring of
endomorphisms of a module 3, such that 8—1 (division

ring) is its commutator. We will prove the following
important proposition:

Tueorem 46: For 0=fxeM, with B-L(0) an frredu-
ctble ring of endomorphisms of W having D as ils commu-
tator, the right ideal 3, of 8, whichk annihilates [2]= x, 3,
is =0 as for 0Fxé[%] we have x3,5=(0), (cf. [3])
Evidently, the case in which the order (/@) is one,
because, in that case, #83=¥=x«D, for every 0 txrec#l,
is such that only the right ideal (0} will annihilate
[#]=#, and we may not find x,¢[x]. In the other cases
the prool is as follows. Clearly, the right ideal of the
absolute which annihilates [x,] is ==0. But we are consi-
dering the annihilator contained in #, Let us take
0= xé[x] and suppose that %3, —0. If 4,68 is such
that # .4,=x, the correspondence

xA-x, A A, (for every de8), (4)

is a #-endomorphism of M, as we will see. Firstly, it is
x 8 =8; after, if we have a C such that x 4 =xC,
(CeB), or i (A—C)=x 4, (A—C)=0, is 4,(A—C)eT;,
and, consequently, x4, (4d—C)=0, or 2y 4, A= x, 4,C.
Then, in the correspondence (4), 2, 4 and %, C have the
same correspondent. Let =, e represent the endomor-
phism (4). We have

.&"kn.ml?.&akmu\mtll.».._hn_. H_”H"xﬁ.ui.ﬁak&_kﬁ#”.ﬂunu.

As x(Ad— A4 A)=0, we have also x(A—. A A)=
={x—x4,) A=0. As 4 is any element of 8, we have
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.Hal_ﬁuknm.#".u_ or .ﬂa”HuaA...H.Wﬂm ..ﬂa”.ﬂnnhmp"uﬂﬁk.ﬁ_ L..n.m._."
=xixe[x], which is against the hypothesis. Then
% dy=(0) is an absurd and the theorem is proved. Con-
sequently, we have: 1) x 3, —M; 2) if 2,2, ¢ ¥ are D-in-
dependent, there exists B;,5:e8 such that x, By= x,
%1 By=0, 2% Bi=0, x By= %, [4], [24]. This second con-
sequence can be proved as follows: there exists e 3,
such that 2 Ay=2x and 4;e3, such that x A, =2 .4,.
Taking then By= 4y, By = 4, — A}, we have x, By= =,
.».._Lmaﬂ__u_ &,LW_"R;L&_[L}_S"H:&HHH: Hnm_”.«u.
(A — A\)=x A1—x; A1=0. And we can now give the
following more general proposition :

Tueoren 47:  If 84(0) is an irreducible ring of endo-
morphisms of W and it is B=D; if %, ,2,6H are
D-independent and Ay, A, e® such that x A;=x,,
2 A;=0, (i), the ideal 3, of 8, which annihilates the
D-subspace of ¥ generated by x1,--. ,x, and represented by
(%100 %] s 55(0), and we have, for each xé[xy,--,x,],
%3 ==(0). As in theorem 46, the hypothesis (¥/D)>u
carries that is ==(0) the right ideal of the absolute which
annihilates [#,--.,,]. But we are searching the annihi-
lator contained in 8. For 0 x,¢[x,, -+, %,] and some #,
we will study

2 A-xo 4: A, (for every AeB).

We conclude that this correspondence is a #-endomor-
phism and we can write [we are supposing 2,3 —(0)]:

Hm\le.&nkﬁ.,.L.m.”.Hmkmﬂﬁ.u .”R..m.ﬂu_‘
Analogously, we have

Xi=2; i x; Aoy = 20 A; Ai=x; &y
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and also 4 — 4,e3, x,A; A;=xy A;. Taking D=2 4,;,
we have

ti(A=DA)y=x; A —2x;D4=0,
n(A—DA)=(x—xD)A=0,

and, as .4 is any element of 8, we conclude
n—xnl=0, o= D=xe2 A:.
The 8-endomorphisms «,---,2,63 give then
f=mildi=xiA; Ai=Zx06(x,---,%),

against the hypothesis that x ¢ [x,, ---,x,]. It is an absurd
to suppose xp3 = (0).

Consequently, if (3/D)>#, we can find, from the 4;,
taking %y 1€[%,---,%), 2 system of By,...,B,, B, ,¢8
such that _ﬁh.aw..”.ﬂr Xy hwq.l 0, _n_u. H.l_lg__,___ ._”u.“..u.” 1,2,...
v ity 41}, as we will see, Taking x,.1 = %, we know
that 2,3 =~(0), and, then, x,3 =M. There exists 4,3
such that x.4y—2x. And there exists also .4jel,
(f=1,2,..-,n), for which we have xy 4= % 4;. Taking
then Ay=By.p1, Bi= A:— A}, we see that

Kt .mu_TT._.“_HzL.._ ' H_-.L..mwu..T“_.”..ﬁn. kﬂ_u “._uu
% Bi=2x; Ai—x: Ai=x: A=x;, x;B=x;(4i— A)=2; =0,

(fFi,f=1,2,.--,M), as we desire.

The relations between theorem 47 and the one of
CuevaLLey-Jacoesoxw, [24, § 6], can be explained easily.
By theorem 47, we conclude that every irreducible ring
of endomorphisms with ¥ as its commutator, is a dense
ring in ¥ over B. Conversely, by the considerations
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before theorem 43, we see that we can apply them to
every dense ring of D-endomorphisms of a module 3,
and, consequently, this dense ring is an irreducible one
and has @ as its commutator, [4].

_ As we have seen that given [, ..., x,] its annihilator
3, in 8, does not annihilate x,.,¢[x,,.--,x.], we con-
clude that the module annitilator of 3 (the D-submodule

whose elements are annihilated by 3J) is the submodule
[%1,--,%]. It yields the following

Tueorem 48: If B is an drreducible ring of endomor-
phisms of W and D is ils commulator, the finite D-sub-
spaces of B are exactly the modules annihilators of the
right ideals of 8 which annihilate them.

11) On closed rings — The notion of closed ring could
be given in this way: & is a closed ring, if there exists
a module 3 in whose absolute 3 the ring R is faithfully
represented and such that, also in 3, ® and # are reci-
procal commutators. In this sense of closed ring, we can
give the lollowing general proposition: 2 is closed, if,
and only if, it has the identity.

The greatest interest of the notion of closed ring is
given, now, by a more restrictive feature: B, faithfully
represented as an endomeorphism ring of some module
#, is closed, if, and only if, # and B are reciprocal
commutators,

When #=23 is a division ring of endomorphisms of
#, containing the identity endomorphism, we have
shown that @ is closed. In this §, we will prove a affirma-
tion, made after theorem 42, which respects to a simple
noetherian ring of endomorphisms. But, before that, we
will return to simple rings with a minimal right ideal
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and to a question related with the theory of represen-
tations of the simple noetherian rings.

If & is a simple ring, not zero ring, let us suppose
that ¥ has a minimal right ideal r=~(0). & induces in r
an endomorphism ring %: #~%, xer, x-xa=xd,
(ae%, Ae%). As 5 =%, where n is caracterized by Em
relation ra=(0), we have s=(0) or s=%. L a=5, we
conclude r&=(U), r*=(0), 5°=(0), against the hypothe-
sis. Consequently, we have a=(0), =%,. The simple
ring is, then, faithfully represented as irreducible ring of
endomorphisms of r. We have, then, an irreducible ideal
ring, where the minimal right ideals are isomorphic, and,
by that, ¥ equals its anti-radical, (cl. P:U__ and can be
represented as direct discrete sum 2=2¢, 5, (ne M), of
5-isomorphic submodules, each one represented by a pri-
mitive idempotent. The ring of Z-endomorphisms of &
the ring of all row-summable matrices over the division
ring @ of endomorphisms of a simple right ideal. ¥ is
anti-isomorphic to e,8e,, (zeM). & has also minimal
left ideals, which are all isomorphic. And we can give
the following

Theorem 491 If & is a simple ring, not sero ring, with
a minimal right ideal, the ring of its %lma&aﬁaﬁ%ﬁiw is
isomorphic to a complefe ring of row-summable malrices
over the division ring of B-endomorphisms of a minimal
right ideal of &.

The simple ring & of this theorem is not, generally, a
closed H.msm. in any of the two sense of this notion, as it
has not, in general, the unity. If 1%, the sum Mmcm is
a finite one and % is a noetherian simple ring, closed in
the first of the two senses.

With respect to the second of the senses, one can
give the following proposition, connected with the theory
of the representations:
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Tueorew 501 A noetherian simple ring is closed in the
absolute of every of ils minimal right ideals. As we know,

it is 3= X D'¢;;, where the e; constitute a system of
i

matrices units and ¥’ is the division ring of those ele-
ments of ¥ which commute with the matrices units,

(D), pg. 87-39 and 54-58]. We know also that I'=¢, ¢,
and

__‘"_."_ — 7 ﬂ..u

B—30e; =320
i F fof

where ;=28"¢;=¢;5—¢,5% (e;=0¢), is a simple right

4

ideal. The expression given to ¥ shows that % is a left
D-module, Though 3] as it commutes with the €7, Can be
placed at right, we will fixe the place of ¥, to give a
sense to the application of the product a'é'e®' to the ¢y
The convention is that & acts in first place. .Hmms
(') e;;=e;(a'b") ey (8 ), generally. Thus r=20¢; 4
+ -+ 8¢, is a module which faithfully represents %
as an irreducible ring of endomorphisms. For x;er,, the
correspondence x -x .4, (Ae%), is an admissible one
with respect to ¥': a'x,~a'xi. A=a'. 2, 4, (a'e®). The
elements of & induce D-endomorphisms in r;. We will
show that any ©-endomorphism is represented by an
element of Z. If the endomorphism can be given by the
correspondence

w:.lf_mm.|dm__.._,m;q _”.&.wmﬂdu
3

taking s= = die;, we have
L

e s=2Zdpe=e;.
x

Shortly: % is faithfully represented in the absolute &,
of the endomorphisms of r;, as the ring of ¥-endomor-
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phisms. @' has in 3, an anti-isomorphic image 3, which
is a division ring with ¥ as its commutator. And from
the theory of the irreducibles rings, we know that & and
I are reciprocal commutators.

With the terminology of the theory of the represen-
tations, as referred in § 5, the theorem which we have
proved means that to the minimal right ideals of a simple
ring &, completely reducible and with identity, belong
faithful reciprocal and irreducible representations of &.
The representation ring is the division ring 2 of the
right %-endomorphisms of each of the minimal right

ideals, which behaves as double-modules for which 8=,
O—5_—1, Clearly, as it happens in the theory of reci-
procal representations by matrices, ¥ and %, are right

operators of the representation module 1, [(n), Cap. VIIL.

It follows the proposition referred in the beginning
of this § and after thorem 42. It reports to an important
case of closed ring and constitute a generalization of the
theory of division rings of endomorphisms. We have:

Turoren 51: If B is @ noetherian simple ring of endo-
morphisms, containing the identity endomorphism, & and &
are reciprocal commutators in the absolute 3 (or: 5 is closed
in &). According the considerations which preceded theo-
rem 36, let us write ¥ = Zm,, (x € M), or, more precisely,
W — 3 x, 1., where the x,. e and the r, are simple right
ideals of a decomposition of ¥. Each my is an S-module,
S_closed, as it follows of theorem 50, by corollary 10 of
theorem 31, M= Zm. is an Z-module, Z-closed.

As in the case of division rings, we can make a direct
verification of the theorem. The isomorphisms A.., intro-
duced in § 8, in the theory of direct discrete sums of iso-
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HmuﬁEn modules, in which xur, =2, 1, can be defined in
_nEm way: let us consider an isomorphism tu =1, in
which € oy and let us take xuen—xp, H??.m.vn..‘r?
(seZ). If By and Z. are the rings of %rnﬂﬁ_a_uoaﬁwmmﬁm
of ﬂ_nuE.& ¥a¥u, respectively, we know [§ &, theorem 31]
that 2 is isomorphic to the ring of the B,-endomorphisms
of ru, which, by theorem 50, is isomorphic to %. Then &
and ¥ are isomorphic. A more detailed analysis shows
that to every ®¢ ¥ corresponds an se% such that @ —s,
and the theorem is proved. Let us take ©e¥ and let
£y e ¥ be the ¥-endomorphism which applies 3 over x, ru.
© defines an £, & Es-endomorphism in xura, to which
corresponds a 8,-endomorphism of t,. This one, accor-
ding theorem 50, is represented by a right multiplication
by an se: 7y -rus. The corresponding Z.-endomorphism
1s then Xurp-xurus=(2u7u)0, [cir. theorem 31]. We
will now prove that x, e~ {dr)O=uxrs, for every v

Let then €p—p,, enf=pg t=7,, We have ,

T lud > (tuen ) Auy=(2ueut) Eu Ayy =

= A.H_..r 4T m_..___ »uln..._h.__ﬂuﬂe__u...h." b u...._m

Xv iy Ir_HH..u. ....J__”_ .M- = Hn-..u.__uc w_.”__.m. = _”.H.T € hu »m-_._..... _...w"
”_”.H“h £, .mﬂ.r@ h_m.m..ﬂq"_“.un._... £ ﬁ.m.”_ hT«”ﬁHt £u w.h_.m._.p.._ F= s,

The theorem now proved is included in the followi ng

general proposition, which is nothing more that corol-
lary 10 of § 8:

Theorem 52: [If B is an endomorphism rine of a
module W, containing the identity endomorphism, B and B
will be reciprocal commutators in the absolute & of W, if
we can write W= Zwy as a direct discrete sum of w:_wmm__“na-
dules, B-isomorphic, in which one B is closed.
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Let now & be a simple ring, with the field 3=% as
its center. If 34 is the ring of #-endomorphisms, we have
#2325 2®, The subrings ¥, and &, are reciprocal commu-
tators in &, &5 and @. In & and 34, # and 34 are reci-
procal commutators; and, in €, & and @ are also reci-
procal commutators. If # is a prime field, the results on
irreducible rings show that:

Theorem 53: [n a simple ring %, whose center is a
prime field 8, all endomorphisms are B-endomorphisms.
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