

Uncertainty evaluation for analysis and sampling

S L R Ellison LGC, UK

Introduction

- Highlights from current guidance
- What's missing?

Eurachem & CITAC	Eurachem & <u>CITAC</u>
EURACHEM / CITAC Guide CG 4	EURACHEM / CITAC Guide
Quantifying Uncertainty in Analytical Measurement	Measurement uncertainty arising from sampling A guide to methods and approaches
Third Edition	EUROLAB, Nordtest and the UK RSC Analytical Methods Committee
	First Edition 2007
QUAM:2012.P1	<u></u>

Uncertainty evolution

Pre- Random/systematic error; Error propagation in1978 chemistry (Eckschlager 1961); Collaborative study

1980	 BIPM INC-1 (1980)
1982	 – Type A / Type B – Combine as variances
1986	

- 1993 ISO Guide
- **1995** EURACHEM Guide 1st ed
- 2000 EURACHEM Guide 2nd ed (QUAM:2000
- **2010** GUM Supplement 1 (MCS)

- AOAC Stats manual (Development/validation)
- ISO 5725:1986 (Collab trial)
- ISO 5725:1994 (Adds trueness)
- ISO 21748 Uncertainty from collab study data

3rd Edition EURACHEM/CITAC guide published

QUAM:2012 Ch. 4. The Process of Measurement Uncertainty Estimation

- Outline of the process
 - Specify measurand
 - Identify Sources
 - Group and quantify
 - Combine

• Unchanged in 2011

Ch. 4. The Process of Measurement Uncertainty Estimation

Ch 7: Quantifying Uncertainty

- Introduction and procedure
- Evaluating uncertainty by quantification of individual components
- Closely matched certified reference materials
- Uncertainty estimation using prior collaborative method development and validation study data
- Uncertainty estimation using in-house development and validation studies
- Data from proficiency testing
- Empirical and ad-hoc methods

Significant bias without correction

Significant bias without correction – increasing reported uncertainty

- Is this sensible?
- If not, what is the alternative?
- If so, how large an expansion?

Different uncertainty expansion methods

$$U_{+} = k \cdot u(y_{obs}) - \Delta$$
$$U_{-} = k \cdot u(y_{obs}) + \Delta$$

$$U = k \cdot u(y_{obs}) + |\Delta|$$

$$U = k \cdot \sqrt{u(y_{obs})^2 + \Delta^2 + u_{\Delta}^2}$$

$$U = k \sqrt{u(y_{obs})^2 + \left(\frac{\Delta}{k}\right)^2} \qquad \qquad U = k \sqrt{u(y_{obs})^2 + \left(\frac{\Delta}{k}\right)^2 + u_{\Delta}^2}$$

... all of which are wrong at least some of the time.

Sampling uncertainties

QUAM:2012 - Identifying Uncertainty Sources

• A list of likely sources of uncertainty

Sampling	Sample effects
Storage Conditions	Computational effects
Instrument effects	Blank Correction
Reagent purity	Operator effects
Assumed stoichiometry	Random effects
Measurement conditions	

Does measurement uncertainty include sampling?

EURACHEM position

- If the measurand relates to a bulk material from which samples are taken for analysis, the uncertainty in the estimated value for the measurand must include the uncertainty arising from the sampling process
- If the result is reported on the sample 'as received' by the laboratory, only within-laboratory sub-sampling contributes to the uncertainty

Different approaches to control of sampling

- Gy: Well respected, based on management and control to eliminate sampling uncertainties
- Sampling uncertainties quantified using replication
 - Ramsey et al
 - Eurachem Guide
- Applying modelling approaches to sampling uncertainty
 - Minkkinen et al

Using the 'duplicate method' 1) Separating sampling and analysis

Sampling target:

Portion of material, at a particular time, that the sample is intended to represent.

Example: Nitrate in lettuce (Eurachem Guide p 35ff)

Duplicate method

8 (or more) targets sampled in duplicate

Duplicate sampling arrangement

8 sampling targetsSampled in duplicateEach sample duplicateanalysed in duplicate

Modelling for sampling uncertainty: Cd and P in top soil

LGC

Modelling for sampling uncertainty: Cd and P in top soil

Note comments: "additional effort and cost is not appropriate for routine measurements."

A policy problem

- Sampling has traditionally been managed through sampling guidance
 - Controlled sampling plans
 - Uncertainty on sample 'as measured'
- Availability of UfS (sampling uncertainty) now permits treatment of sampling as part of uncertainty
- Is sampling an uncertainty, or a problem to manage?

Combining uncertainties Recent theoretical options

Combining uncertainties – The basic GUM approach

Kragten's method - A spreadsheet approach

Finite difference methods compared

Finite difference 1st order

- Accurate gradient
- Faithfully reproduces 1st order GUM uncertainty
- Simple to calculate
- 1st order GUM is insufficient for highly non-linear cases
 - Needs 2nd and higher order

Kragten

- Exact only for linear examples
- Does not reproduce 1st order GUM
- Simple to calculate
- Usually adequate for mild nonlinearity
- May be better for highly nonlinear cases

Both much simpler than manual differentiation

'Supplement 1' Monte Carlo A simulation-based approach

Principle of simulation

MCS example y = a/(b-c) (999 replicates)

Calculations carried out using metRology 0.9-4 (http://sourceforge.net/projects/metrology/)

Bayesian methods

- Considerable advances in statistics over the last 20-30 years
- Now reaching NMIs
- Start with a (usually uninformative) distribution for the value of the measurand
- Update based on observed data and uncertainties
- Integration (often numerical) provides a 'posterior probability' for the value of the measurand.

Bayes applied to Measurement Uncertainty

Priors matter: i) Fixed standard deviation

Priors matter: ii) Proportional standard deviation

Priors matter in Bayesian analysis

Current guidance

- Eurachem guidance covers uncertainty estimation for both analysis and sampling
- Covers basic GUM but also covers validation approaches thoroughly
- Uncertainty combination guidance includes recent simulation methods
- Guidance on uncertainty from sampling provides a simple methodology as well as describing modelling approaches

What's missing?

- Still no firm consensus on handling uncorrected bias
- Very limited information about non-normality
 - Biological measurements; Large uncertainties (RSD > 0.3)
- Correlation
 - General advice only: arrange matters to eliminate the problem
- Sampling an uncertainty or a problem to manage?
- 'Simple' but confusing problems
 - To root, or not to root when \sqrt{n} is sensible; Independence
- Formal Bayesian treatments
 - The long term direction of JGCM?

Looking forward

- Chemical testing laboratories are probably content with uncertainties based on validation and interlaboratory study data
- Increasing interest in reporting uncertainties in proficiency tests
- Simplified Bayesian approach likely in future GUM implementation
 - Small degrees of freedom (≤2) for some components of uncertainty will be a problem for chemists
- Full Bayesian treatments will take time to understand
 - Intuition is a poor guide to sound priors

Summary

- Much done
- Probably more to do
 - More short guidance on 'simple but confusing' problems
 - Adapting to future JCGM guidance
 - Bayesian approaches probably needs long term development
 - Policy decisions on sampling