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Introduction
m Here the left [right] biorder ideals w' [w"] of regular rings are defined.
m It is shown that these ideals form a complemented modular lattices €27, and
Qg .
m We also discuss the basis and order of these lattices.
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Introduction

Biordered sets

A partial algebra E is a set together with a partial binary operation on E. The
domain of the partial binary operation will be denoted by Dg. On E we define

W' ={(e,f): fe=e}w' ={(e, f) :ef =e}

also., R=w"Nw")™, L=wn W™, andw = w" Nt

Definition 1

Let E be a partial algebra. Then E is a biordered set if the following axioms and
their duals hold:

w” and w' are quasi orders on E and

Dg=(w Uw)U (W uwh)™?
few(e) = fRfewe
gw'fand f,g € w'(e) = gew! fe.

gw" fw'e = gf = (ge)f
gw'fand f,g € w"(e) = (fg)e = (fe)(ge).
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P.GRmeo | et M(e, f) denote the quasi ordered set (w'(e) Nw"(f), <) where < is defined by
Introduction g < h < egw'eh, and gfw'hf. Then the set

S(e,f)={h e M(e,f):g < h forall g € M(e, f)}

is called the sandwitch set of e and f.
m f,gcw(e) = S(f.g)e =S(fe, ge)
The biordered set F is said to be regular if S(e, f) # 0 Ve, f € E.

m If S is a regular semigroup, then E(S), the set of all idempotenrs of S is a
regular biordered set.
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Introduction For e € E, w"(e) [w!(e)] are principle right [left] ideals and w(e) is a principal two
sided ideal and these ideals are called biorder ideals generated by e.

Definition 3

Let e and f are idempotents in a semigroup S, then an e-sequence from e to f is a
finite sequence e = eq, €1, - , e, = f of idempotents such that e;_1 (£ U R)e; for
7: pu— ]‘7 LR ?n.

If there exists an E-sequence from e to f, then d(e, f) is the length of the shortest
E-sequence from e to f.
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m A lattice is a partially ordered set in which each pair of elements has a least

upper bound and a greatest lower bound.

Introduction
m A lattice is called modular (or a Dedekind lattice) if the modular law holds in
itta<c=(aVb)Ac=aV (bAc).
m a lattice is bounded if it has both a maximum element and a minimum
element. We use the symbols 0 and 1 to denote the minimum element and
maximum element of a lattice.

m A bounded lattice L is said to be complemented if for each element a of L,
there exists at least one element b such that avVb=1and a A b= 0.



Lattice of
biorder ideals
of regular
rings

P. G. Romeo

Introduction

Definition 4

Two elements a and b of a lattice L are said to be perspective (in symbols a ~ b) if
there exists  in L such thataVz =bV xz,aANx=bAx =0 and such an element
x is called an axis of perspective.

Definition 5

Let L be a complemented modular lattice with 0 and 1. By a basis of L we mean a
system (a; : ¢ =1,--- ,n) of n elements in L such thata; : i=1,--- ,n are
independant and a; Uas U ---a, = 1.

A basis is called homogeneous if its elements are pairwise perspective. The number
of elements in a basis is called the order of the basis and a lattice is said to be of
order n if it admits a homogenious basis of order n
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Regular Rings

Regular Rings and Ideals

A ring (R, +,-) is called regular if for every a € R there exists an element a’ such
that aa’a = a. A subset A of a ring R is called right ideal in case

r+ye A zze A

foreach z,y € A and z € R.

If Ris aring and a C R is a right ideal then a has a unique least extension (a),
containing a. Similarly we have the unique left ideal (a); and two sided ideal (a)
containing a.

Definition 6

A principal right [left] ideal is one of the from (a).[(a);]. The class of all principal
right [left] ideals will be denoted by Rz [Lr].
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Lemma 2.1

Let R be a ring, e € R, then
Regular Rings
m e is idempotent if and only if (1 — e) is idempotent.
m (e), is the set of all x such that x = ex is a principal right ideal.

and (1 — e), are mutual inverses.

m (e)r
m/f <e>r (f)r and if (1 —e), = (1 — f), where e and f are idempotents, then
=f

Two right ideals a and b are inverses if and only if there exists an idempotent e
such that a = (e), and b = (1 — e),.
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_ Every principal right ideal (a), has an inverse right ideal.
e For every a there exists an idempotent e such that (a), = (e),.
For every a there exists an element = such that axa = a.
[ For every a there exists an idempotent f such that (a); = (f);.

Every principal left ideal (a); has an inverse left ideal.

The set Ry is a complemented, modular lattice partially ordered by C, the meet
being N and join U , its zero is (0), and its unit is (1),.
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(ER, -) denote the set of all multiplicative idempotents in the ring R. Then (Eg,-)
is a regular biordered set with quasiorders w” and w'.

soder 10ese Note that w” (e) [w(e)] are right [left] ideals of the ring R and are called the

R biorder ideals of the ring R.

Proposition 1

Let e and f be idempotents in a regular ring R. Then the following holds.
ew! f if and only if (1 — f)w" (1 —e)
ew” f if and only if (1 — f)w!(1 —e)
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Corollary 1

Let e and f be idempotents in the ring R. Then
w'(e) = wi(f) if and only if w"(1 —e) = w"(1 — f)
w'(e) = w'(f) if and only if W' (1 —e) = wi(1 — f)

Let R be a regular ring with ef = 0 for every e, f € ER, then it is easy to observe

the following:
The only idempotent in M (e, f) is {0}

ew(l = f)
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Proof.
Biorder deals | et M (e, f) = {0}. Since R is regular, the element ef € R has an inverse z € R

of Regular
Rings so that

(ef)z(ef) =ef
z(ef)r = x.
Let g = fxe, then g is an idempotent and g € M (e, f) so g = 0, by hypothesis.
Hence

ef = (ef)z(ef) = e(fze)f = (eg)f = 0



_Lattic_e of
e
i Gr'nss Lete, f,g € Er withef = fe =0. Then e+ f is an idempotent and the following
. . Romeo holds.

ew(e + f) and fw(e + f)
Biorder Ideals /fewlg and fwlg' then (e + f)wlg
of Regular /fewrg and fwrg, then (€+ f)wT‘g

Rings
Proof.

Given e, f € Er with ef = fe =0, then (e+ f)2 =€ +ef + fe+ f2=e+ f.
melet+f)=el+ef=e+ef=c¢ and (e+ fle=e?>+ fe=e+ fe=e. Thus
ew(e+ f). Similarly, we can prove fw(e+ f).

m Given ew!g and fw!g. Therefore, (e + f)g=eg + fg=e+ f ie., (e + flwlg.
The proof of (3) is similar. O
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Lete, f € Egp. Then w"(e) Uw"(f) =w"(e+ f") where f"Rf" and f' = (1 —e)f.
Biorder Ideals

R Denote by Q25 the class of all principal w”—ideals and by €27, the class of all
principal w'-ideals. In the light of the above lemma we have the following theorem.

Theorem 4
Qp is closed with respect to the operation U defined in Qp.
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Annihilators in w” and w'-ideals.

Definition 7

For every w™-ideal we define

(W (e)! = {y: yz = 0 forevery z € w"(e)}
and for every w'-ideal,

(W (e)f = {y: zy =0 forevery z € wl(e)}

then (w”(e))” is a left ideal and (w'(e))? is a right ideal.

Proposition 2

For e € Eg, (w'(e))® is a principal w™-ideal and (w"(e))” is a principal w!-ideal. In
fact, (w'(e))® =w"(1 —e) and (w"(e))X = wi(1 —e).
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w'(e) = {g:eg=g}
{9: (1 —e)g =0}
= {g:u(l —e)g =0; forevery u € Er}

= {g: forevery h € w!'(1 —¢€),hg = 0}

where h = u(1 —e). Since h(1 —e) =u(l —e)(1 —e) = u(l — e) = h we have
he€w(l—e). Thus w'(e) = (W1 —e))~. O
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Lemma 3.4

Lete, f € ER and w"(e) and w"(f) are ideals generated by e and f, then
w'(e) Cw'(f) = (W(e))* D (W' (f))*
w'(e) = (w'(e))"™ and (W' (e))" = (w" ()"

In the following proposition we establish the relation between Q7 and Qr by using
the relation between principal w-ideals and their annihilators.

Proposition 3

Let R be a regular ring and ER the set of idempotents in R. Let €27, and Qg
denote the lattice of principal w'-ideals and principal w”-ideals of E. Define ¢ and
1 on Qf and Qg by

$(w'(e)) = (w'(e))" and P(w'(e)) = (w'(e))"

then ¢ and 1 are mutually inverse anti-isomorphisms.
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Let w"(e) and w"(f) be principal right w-ideals generated by e and f. Then
(w"(e) Uw"(f))F = (w"(e))* N (w"(f))*.

Lemma 3.6
For two principal w"-ideals, w" (e) and w" (f) their intersection is also a principal

w"-ideal.
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w'(e)Nw" (1 —e) = {0}. Thus w"(e) and w"(1 — e) are complements of each other
in the lattice of all principal right w-ideals. Similarly, w!(e) and w!(1 — ) are
Biorder Ideals  complements of each other in the lattice of all principal left w-ideals of Eg.

of Regular .
Rings Thus we have the following theorem.

Let R be a ring then the set of all principal w!-ideals 7, and the set of all principal
w’-ideals 25 of R are complemented, modular lattices ordered by the relation C,
the meet being N and the join U; its zero is 0, and its unit is w!(1)[w"(1)].
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Proposition 4

—
3
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1
]

For e € Eg, (w'(e))® is a principal w"-ideal and (w"(e))¥ is a principal w'-ideal. |
fact, (w'(€))® =w"(1 —¢€) and (w"(e))X = wi(1 —e).

Two elements of a lattice are said to be in perspective if they have a common
complement. For idempotents e and f, we define d;(e, f) to be the length of the
shortest E-sequence from e to f, which start with the £ relation and d,.(e, f) to be
the length of the shortest E-sequence from e to f which start with the R relation.



Lattice of
biorder ideals
of regular
rings

P. G. Romeo

Biorder Ideals
of Regular
Rings

Now we describe perspectivity of two members of Q21, in a regular ring in terms of
the d; function as follows:

Lemma 3.8

Let w'(e) and W'(f) be biorder ideals in Qr. Then w'(e) and W'(f) are perspective
in Qr, if and only if 1 < dj(e, f) < 3.

Definition 8

Let Q7 be a complemented modular lattice with zero 0 and unit w!(1). A basis of
Qp is a collection (w'(e;),i = 1,2,...n) € Qf such that (w!(e;):i=1,2,...,n)
are independent and w!(e1) U...w!(e,) = w'(1). The number of elements in a
basis is called the order of the basis. Further, a basis is homogeneous if its
elements are pairwise perspective.

Theorem 6
Let R be regular ring with M (e;, e;) = {0} for i # j and dj(e;,e;) < 3. Then the
complemented, modular lattice 27, is of order n.
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