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Abstract

Here the left [right] biorder ideals ωl [ωr] of regular rings are defined.

It is shown that these ideals form a complemented modular lattices ΩL and
ΩR .

We also discuss the basis and order of these lattices.
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Biordered sets

A partial algebra E is a set together with a partial binary operation on E. The
domain of the partial binary operation will be denoted by DE . On E we define

ωr = {(e, f) : fe = e}ωl = {(e, f) : ef = e}
also., R = ωr ∩ (ωr)−1, L = ωl ∩ (ωl)−1, andω = ωr ∩ ωl

Definition 1

Let E be a partial algebra. Then E is a biordered set if the following axioms and
their duals hold:

1 ωr and ωl are quasi orders on E and

DE = (ωr ∪ ωl) ∪ (ωr ∪ ωl)−1

2 f ∈ ωr(e)⇒ fRfeωe
3 gωlf and f, g ∈ ωr(e)⇒ geωlfe.

4 gωrfωre⇒ gf = (ge)f

5 gωlf and f, g ∈ ωr(e)⇒ (fg)e = (fe)(ge).
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Sandwitch set

Let M(e, f) denote the quasi ordered set (ωl(e) ∩ ωr(f), <) where < is defined by
g < h⇔ egωreh, and gfωlhf. Then the set

S(e, f) = {h ∈M(e, f) : g < h forall g ∈M(e, f)}

is called the sandwitch set of e and f .

f, g ∈ ωr(e)⇒ S(f, g)e = S(fe, ge)

The biordered set E is said to be regular if S(e, f) 6= ∅ ∀e, f ∈ E.
If S is a regular semigroup, then E(S), the set of all idempotenrs of S is a
regular biordered set.
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Definition 2

For e ∈ E, ωr(e) [ωl(e)] are principle right [left] ideals and ω(e) is a principal two
sided ideal and these ideals are called biorder ideals generated by e.

Definition 3

Let e and f are idempotents in a semigroup S, then an e-sequence from e to f is a
finite sequence e = e0, e1, · · · , en = f of idempotents such that ei−1(L ∪R)ei for
i = 1, · · · , n.

If there exists an E-sequence from e to f , then d(e, f) is the length of the shortest
E-sequence from e to f .
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Modular Lattice

A lattice is a partially ordered set in which each pair of elements has a least
upper bound and a greatest lower bound.

A lattice is called modular (or a Dedekind lattice) if the modular law holds in
it: a ≤ c⇒ (a ∨ b) ∧ c = a ∨ (b ∧ c).
a lattice is bounded if it has both a maximum element and a minimum
element. We use the symbols 0 and 1 to denote the minimum element and
maximum element of a lattice.

A bounded lattice L is said to be complemented if for each element a of L,
there exists at least one element b such that a ∨ b = 1 and a ∧ b = 0.
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Definition 4

Two elements a and b of a lattice L are said to be perspective (in symbols a ∼ b) if
there exists x in L such that a ∨ x = b ∨ x, a ∧ x = b ∧ x = 0 and such an element
x is called an axis of perspective.

Definition 5

Let L be a complemented modular lattice with 0 and 1. By a basis of L we mean a
system (ai : i = 1, · · · , n) of n elements in L such that ai : i = 1, · · · , n are
independant and a1 ∪ a2 ∪ · · · an = 1.

A basis is called homogeneous if its elements are pairwise perspective. The number
of elements in a basis is called the order of the basis and a lattice is said to be of
order n if it admits a homogenious basis of order n
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Regular Rings and Ideals

A ring (R,+, ·) is called regular if for every a ∈ R there exists an element a′ such
that aa′a = a. A subset A of a ring R is called right ideal in case

x+ y ∈ A, xz ∈ A

for each x, y ∈ A and z ∈ R.
If R is a ring and a ⊂ R is a right ideal then a has a unique least extension 〈a〉r
containing a. Similarly we have the unique left ideal 〈a〉l and two sided ideal 〈a〉
containing a.

Definition 6

A principal right [left] ideal is one of the from 〈a〉r[〈a〉l]. The class of all principal
right [left] ideals will be denoted by R̄R [L̄R].
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John von Neumann describes the structure of principal ideals of a regular ring, here
we recall some of those results.

Lemma 2.1

Let R be a ring, e ∈ R, then
e is idempotent if and only if (1− e) is idempotent.

〈e〉r is the set of all x such that x = ex is a principal right ideal.

〈e〉r and 〈1− e〉r are mutual inverses.

If 〈e〉r = 〈f〉r and if 〈1− e〉r = 〈1− f〉r where e and f are idempotents, then
e = f .

Theorem 1

Two right ideals a and b are inverses if and only if there exists an idempotent e
such that a = 〈e〉r and b = 〈1 − e〉r .



Lattice of
biorder ideals
of regular

rings

P. G. Romeo

Introduction

Regular Rings

Biorder Ideals
of Regular
Rings

References

Theorem 2

The following statements are equivalent

1 Every principal right ideal 〈a〉r has an inverse right ideal.

2 For every a there exists an idempotent e such that 〈a〉r = 〈e〉r.

3 For every a there exists an element x such that axa = a.

4 For every a there exists an idempotent f such that 〈a〉l = 〈f〉l.
5 Every principal left ideal 〈a〉l has an inverse left ideal.

Theorem 3

The set R̄R is a complemented, modular lattice partially ordered by ⊂, the meet
being ∩ and join ∪ , its zero is 〈0〉r and its unit is 〈1〉r.
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Biorder Ideals of R

In a regular ring R, every principal right ideal is generated by an idempotent. Let
(ER, ·) denote the set of all multiplicative idempotents in the ring R. Then (ER, ·)
is a regular biordered set with quasiorders ωr and ωl.
Note that ωr(e) [ωl(e)] are right [left] ideals of the ring R and are called the
biorder ideals of the ring R.

Proposition 1

Let e and f be idempotents in a regular ring R. Then the following holds.

1 eωlf if and only if (1− f)ωr(1− e)
2 eωrf if and only if (1− f)ωl(1− e)
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Corollary 1

Let e and f be idempotents in the ring R. Then

1 ωl(e) = ωl(f) if and only if ωr(1− e) = ωr(1− f)

2 ωr(e) = ωr(f) if and only if ωl(1− e) = ωl(1− f)

Remark 1

Let R be a regular ring with ef = 0 for every e, f ∈ ER, then it is easy to observe
the following:

1 The only idempotent in M(e, f) is {0}
2 eω(1− f)
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Lemma 3.1

Let R be a regular ring and e, f ∈ ER such that M(e, f) = {0}, then ef = 0.

Proof.

Let M(e, f) = {0}. Since R is regular, the element ef ∈ R has an inverse x ∈ R
so that

(ef)x(ef) = ef

x(ef)x = x.

Let g = fxe, then g is an idempotent and g ∈M(e, f) so g = 0, by hypothesis.
Hence

ef = (ef)x(ef) = e(fxe)f = (eg)f = 0
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Lemma 3.2

Let e, f, g ∈ ER with ef = fe = 0. Then e+ f is an idempotent and the following
holds.

1 eω(e+ f) and fω(e+ f)

2 If eωlg and fωlg, then (e+ f)ωlg

3 If eωrg and fωrg, then (e+ f)ωrg

Proof.

Given e, f ∈ ER with ef = fe = 0, then (e+ f)2 = e2 + ef + fe+ f2 = e+ f.

e(e+ f) = e2 + ef = e+ ef = e, and (e+ f)e = e2 + fe = e+ fe = e. Thus
eω(e+ f). Similarly, we can prove fω(e+ f).

Given eωlg and fωlg. Therefore, (e+ f)g = eg + fg = e+ f i.e., (e+ f)ωlg.

The proof of (3) is similar.
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Lemma 3.3

Let e, f ∈ ER. Then ω
r(e) ∪ ωr(f) = ωr(e+ f ′′) where f ′′Rf ′ and f ′ = (1− e)f .

Denote by ΩR the class of all principal ωr−ideals and by ΩL the class of all
principal ωl-ideals. In the light of the above lemma we have the following theorem.

Theorem 4

ΩR is closed with respect to the operation ∪ defined in ΩR.
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Annihilators in ωr and ωl-ideals.

Definition 7

For every ωr-ideal we define

(ωr(e))L = {y : yz = 0 for every z ∈ ωr(e)}

and for every ωl-ideal,

(ωl(e))R =
{
y : zy = 0 for every z ∈ ωl(e)

}
then (ωr(e))L is a left ideal and (ωl(e))R is a right ideal.

Proposition 2

For e ∈ ER, (ωl(e))R is a principal ωr-ideal and (ωr(e))L is a principal ωl-ideal. In
fact, (ωl(e))R = ωr(1− e) and (ωr(e))L = ωl(1− e).
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Proof.

ωr(e) = {g : eg = g}
= {g : (1− e)g = 0}
= {g : u(1− e)g = 0; for every u ∈ ER}

=
{
g : for every h ∈ ωl(1− e), hg = 0

}
where h = u(1− e). Since h(1− e) = u(1− e)(1− e) = u(1− e) = h we have
h ∈ ωl(1− e) . Thus ωr(e) = (ωl(1− e))R.
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Lemma 3.4

Let e, f ∈ ER and ωr(e) and ωr(f) are ideals generated by e and f , then

1 ωr(e) ⊂ ωr(f)⇒ (ωr(e))L ⊃ (ωr(f))L

2 ωr(e) = (ωr(e))LR and (ωr(e))L = (ωr(e))LRL

In the following proposition we establish the relation between ΩL and ΩR by using
the relation between principal ω-ideals and their annihilators.

Proposition 3

Let R be a regular ring and ER the set of idempotents in R. Let ΩL and ΩR

denote the lattice of principal ωl-ideals and principal ωr-ideals of ER. Define φ and
ψ on ΩL and ΩR by

φ(ωl(e)) = (ωl(e))R and ψ(ωr(e)) = (ωr(e))L

then φ and ψ are mutually inverse anti-isomorphisms.



Lattice of
biorder ideals
of regular

rings

P. G. Romeo

Introduction

Regular Rings

Biorder Ideals
of Regular
Rings

References

Lemma 3.5

Let ωr(e) and ωr(f) be principal right ω-ideals generated by e and f . Then
(ωr(e) ∪ ωr(f))L = (ωr(e))L ∩ (ωr(f))L.

Lemma 3.6

For two principal ωr-ideals, ωr(e) and ωr(f) their intersection is also a principal
ωr-ideal.
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For any idempotent e ∈ ER, ωr(e) ∪ ωr(1− e) = ωr(e+ 1− e) = ωr(1) = ER and
ωr(e)∩ ωr(1− e) = {0}. Thus ωr(e) and ωr(1− e) are complements of each other
in the lattice of all principal right ω-ideals. Similarly, ωl(e) and ωl(1− e) are
complements of each other in the lattice of all principal left ω-ideals of ER.
Thus we have the following theorem.

Theorem 5

Let R be a ring then the set of all principal ωl-ideals ΩL and the set of all principal
ωr-ideals ΩR of R are complemented, modular lattices ordered by the relation ⊂,
the meet being ∩ and the join ∪; its zero is 0, and its unit is ωl(1)[ωr(1)].
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Order of the complemented modular lattices.

Lemma 3.7

Let ωl(e) and ωl(f) be in ΩL. Then ω
l(e) and ωl(f) are complements in ΩL if and

only if there exists an idempotent h such that ωl(e) = ωl(h) and
ωl(f) = ωl(1− h).

Proposition 4

For e ∈ ER, (ωl(e))R is a principal ωr-ideal and (ωr(e))L is a principal ωl-ideal. In
fact, (ωl(e))R = ωr(1− e) and (ωr(e))L = ωl(1− e).

Two elements of a lattice are said to be in perspective if they have a common
complement. For idempotents e and f , we define dl(e, f) to be the length of the
shortest E-sequence from e to f , which start with the L relation and dr(e, f) to be
the length of the shortest E-sequence from e to f which start with the R relation.
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Now we describe perspectivity of two members of ΩL in a regular ring in terms of
the dl function as follows:

Lemma 3.8

Let ωl(e) and ωl(f) be biorder ideals in ΩL. Then ω
l(e) and ωl(f) are perspective

in ΩL if and only if 1 ≤ dl(e, f) ≤ 3.

Definition 8

Let ΩL be a complemented modular lattice with zero 0 and unit ωl(1). A basis of
ΩL is a collection (ωl(ei), i = 1, 2, . . . n) ∈ ΩL such that (ωl(ei) : i = 1, 2, . . . , n)
are independent and ωl(e1) ∪ . . . ωl(en) = ωl(1). The number of elements in a
basis is called the order of the basis. Further, a basis is homogeneous if its
elements are pairwise perspective.

Theorem 6

Let R be regular ring with M(ei, ej) = {0} for i 6= j and dl(ei, ej) ≤ 3. Then the
complemented, modular lattice ΩL is of order n.
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