Decision problems and subgroups in higher dimensional Thompson groups.

Francesco Matucci

(joint with J.Belk, C.Bleak, C.Martínez-Pérez, B.Nucinkis)

IMECC - Universidade Estadual de Campinas

June 24th, 2016

International Conference on Semigroups and Automata 2016

A D F A P F A P F P O Q O

Parabéns Gracinda e Jorge!

Thompson's group F

Thompson's group F is the group $PL_2(I)$, with respect to composition, of all piecewise-linear homeomorphisms of the unit interval I = [0, 1] with a finite number of breakpoints, such that

- all breakpoints have dyadic rational coordinates.
- all slopes are integral powers of 2,

Similar to *F*, but with cyclic permutations.

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Similar to F, but with any permutation allowed

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Some results about F, T, V

- ▶ [F, F], T and V are infinite simple groups.
- All are f.p. and of type F_{∞} (Brown-Geoghegan).

- ► *V* contains every finite group as a subgroup.
- F has no free subgroups, but T and V do.
- They all have exponential word growth.

Question (Open for 50 years) Is F paradoxical or non-paradoxical?

Why are Thompson groups interesting?

- 1. Many ways to represent their elements as diagrams.
- 2. Dynamics helps in the study of these groups.

They show up in many different contexts

- Logic
- Universal algebra and semigroup theory
- Dynamical systems
- ► Algebraic Topology, Homotopy and K-theory
- Computer science (Rotation distance, co-CF groups)
- Analysis: C*-algebras
- Cryptography

Generalizations: higher dimensional and braided, diagram groups, Cantor algebra automorphisms, groups acting on fractals.

Diagrams describe conjugacy and dynamics

Theorem (Belk-M) WP(F, T, V) is O(n), while CP(F, T, V) is $O(n^3)$ Theorem (Bleak-Bowman-Gordon-Graham-M-Sapir) For any $\alpha \in V$ we have

$$C_{V}(\alpha) \cong \left(\prod_{i=1}^{s} Maps(\mathfrak{C}, C_{n_{i}}) \rtimes V\right) \times \left(\prod_{j=1}^{t} (A_{j} \rtimes \mathbb{Z}) \wr Sym(q_{j})\right)$$

The Sym(q_j)'s and A_k's are finite groups relating to the symmetries of "flow graph components".

• $Maps(\mathfrak{C}, C_{n_i})$ is the group of continuous maps $\mathfrak{C} \to C_{n_i}$

Definition (Brin)

The group nV is the set of all self-homeomorphisms of \mathfrak{C}^n of the form $h(P_1, P_2)$ where P_1 and P_2 are numbered patterns with the same number of hypercubes. Locally we have

 $(x_1, \ldots, x_n) \mapsto (a_1x_1 + b_1, \ldots, a_nx_n + b_n)$, for suitable a_i 's and b_i 's.

Notice that $\mathfrak{C}^n \simeq \mathfrak{C}$, but is $nV \cong V$?

Lemma

Every element of V has an upper bound on the size of finite orbits.

Lemma

There is no bound on the finite orbits of the baker's map in 2V.

Theorem (Bleak-Lanoue) $mV \cong nV$ if and only if m = n.

Theorem (Hennig-M)

The groups nV are finitely presented and are simple.

Torsion problem for a f.p. group G: given a non-trivial element $g \in G$, can we decide whether or not g has finite order?

Lemma (Brin) *nV* has solvable word problem.

Theorem (Belk) 2V has unsolvable torsion problem.

Unexpected behavior in nV

Theorem (Belk-Bleak)

Given $f \in 2V$, a dyadic point p, and a dyadic rectangle R, it is undecidable whether or not the orbit of p intersects R.

・ロト・日本・日本・日本・日本・日本

Definition

1. $f \in 2V$ is **topologically transitive** if for every pair U, V of open sets in \mathfrak{C}^2 , there is an $n \in \mathbb{Z}$ with $f^n(U) \cap V \neq \emptyset$.

2. $f \in 2V$ is **topologically mixing** if for every pair U, V of open sets in \mathfrak{C}^2 , there is an $N \in \mathbb{N}$ with $f^n(U) \cap V \neq \emptyset, \forall n \ge N$.

Top. mixing \implies top. transitive (but not the converse).

Hyperbolic and stretching elements

1. $f \in 2V$ is stretching if $f_x(p) > 1$ and $f_y(p) < 1 \ \forall p \in \mathfrak{C}^2$.

2. $f \in 2V$ is **hyperbolic** if f^n is stretching for some $n \in \mathbb{N}$.

Remark

Stretching implies hyperbolic, but the converse does not hold.

Proposition

 $S = \{ Stretching \ elements \}$ is a semigroup (neither free, nor f.g.) and $2V = \langle S \rangle$ as a group

Markov partitions and transition graphs

Hyperbolic elements have nicer partitions (Markov partitions)

Such partitions yield a graph containing dynamical information

Proposition (Belk-Martínez-M-Nucinkis)

Let $f \in 2V$ hyperbolic. Then f is topologically conjugate to a two-sided subshift of finite type.

Theorem (Belk-Martínez-M-Nucinkis)

Centralizers of hyperbolic elements which are

- 1. topologically transitive with one fixed point, or
- 2. topologically mixing,

are virtually cyclic.

Subgroups of *nV*

Let Γ be a finite graph with vertices v_1, \ldots, v_n , no loops and no multiple edges. Then

$$G = \langle g_1, \dots, g_n \mid g_i g_j = g_j g_i \ \text{ for all } \{v_i, v_j\} \in \mathsf{Edges}(\mathsf{\Gamma}) \rangle$$

is called a partially commutative group.

Theorem (Belk-Bleak-M)

For every G in the following list, there is an $n \in \mathbb{N}$ such that $G \leq nV$:

- 1. Every partially commutative group,
- 2. Every surface group,
- 3. Every f.g. Coxeter group,
- 4. Every 1-relator torsion group,
- 5. Many 3-manifolds groups.

Corollary (Hsu-Wise, weak version)

Every partially commutative group can be written as a group of asynchronous automata.

Theorem (Belk-Bleak-M)

There exists an $n \ge 1$ with the following properties:

- 1. The isomorphism problem for finitely presented subgroups of nV is unsolvable.
- 2. There exists a subgroup $H \le nV$ that has unsolvable subgroup membership problem and unsolvable conjugacy problem.

Theorem (Corwin-Bleak)

There is an embedding of mV into $nV \iff m \le n$.

Question

- 1. Do surface groups embed into 2V?
- 2. Wider description of centralizers?
- 3. Conjugacy problem?

Fun Fact (Collatz conjecture)

There exists an element of 2V which replicates the Collatz sequences (If n is even, then $n \mapsto n/2$, if n is odd, then $n \mapsto 3n + 1$).