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Circuits over algebraic structures
A= (AR, ), AT A

Circuit C over A

» set of gates

» output gate
» X=a (acA) o X="Ff(X,...,X)

constant gates inner gates

Circuit Evaluation Problem CEP(.A)

Input: circuit C over A
Compute: value of output gate of C

Goal: Classify structures A according to the complexity of CEP(.A)
If A is finite, then CEP(.A) is clearly in P (= polynomial time).
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> efficient parallel algorithm: time (log n)°() on a PRAM with
n°M) processors
» Clearly NCC P
» The big open problem of parallel complexity theory: NC C P?
» A problem A is P-complete if (i) it belongs to P and (ii) every
problem in P can be reduced to A.
» If NC C P then P-complete do not belong to NC

(inherently sequential problems)

New goal: For which structures A is CEP(.A) in NC (resp.,
P-complete)?

Are there structures A such that CEP(.A) is neither in NC nor
P-complete?
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P-complete circuit evulation problems.

Theorem [Ladner, 1975]

Circuit evaluation problem for the boolean semiring B, = ({0,1},V, A)
is P-complete.
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P-complete circuit evulation problems.

Theorem [Ladner, 1975]

Circuit evaluation problem for the boolean semiring B, = ({0,1},V, A)
is P-complete.

A semigroup S is solvable if every group in S is solvable.

Theorem [Beaudry et al., 1993, based on Krohn, Maurer, Rhodes, 1966]

Let S be a finite semigroup.
» If S is solvable, then CEP(S) is in NC

» otherwise it is P-complete.
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Circuits over Semirings

(Easy) P-complete examples

» By, = ({0,1},V,A)
> (Zg,+,:) for d > 2

XAy — x-y -x = 1+(d—1)-x

» finite semirings with additive identity O
and multiplicative identity 1 £ 0

*—0—0 >m

0 1 2 n n+1

contains either B, or Zy for some d > 2

The semiring R = (R, +,-) is {0, 1}-free if it contains no subsemiring
with an additive 0 and a multiplicative 1 # 0.
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Main Theorem
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Main Theorem

Theorem

Let R be a finite semiring.
» If R is {0, 1}-free and (R, ) is solvable, then CEP(R) is in NC

» otherwise it is P-complete.

Using results from semigroup theory:

Corollary

Let S be a finite semigroup.
» If S is a local group and solvable, then CEP(P(S)) is in NC

» otherwise it is P-complete.
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Power semiring over a finite group G

Example: G = (Zs, +)
{0,1,2,3,4}

set cardinalities
nondecreasing

Parallel Evaluation Algorithm
for k=1,...,|G| do
evaluate all gates whose value has size k

endfor
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Invariant: After k-th round all sets of size < k are evaluated.
1. Evaluate maximal U-subcircuits
— every U-gate has inner input gate
2. U-gate copies inner input gate
= evaluate multiplicative circuit
3. Find gates
4. X has correct value if all gates below X are locally correct

{0,1,2,3,4}

2] [(e2]

9/14



rank-functions

The algorithm terminates after |R| rounds if R has a function
rank : R — N with

» rank(a) < rank(a + b)
» rank(a), rank(b) < rank(a - b)
» If rank(a) = rank(a + b), then a = a+ b.
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rank-functions

The algorithm terminates after |R| rounds if R has a function
rank : R — N with

» rank(a) < rank(a+ b)

» rank(a), rank(b) < rank(a - b)

» If rank(a) = rank(a + b), then a = a+ b.

Example: Power semiring over finite group

> |A| < |AU B
> |Al,|B] < |A- B
> If |A|=|AUB]|, then A= AU B.

Lemma

If R has a rank-function and CEP(R, ) is solvable, then CEP(R)
belongs to NC.
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If R is {0,1}-free and (R, -) is a monoid, then R has a rank-function.

a=<b <= b can be obtained from a by iterated

additions/multiplications with elements from R.

Induced function rank : R — N with

» rank(a) = rank(b) iffa<b=<a
» rank(a) <rank(b)ifa=<b

Corollary

If R is {0, 1}-free and (R, ) is a solvable monoid, then CEP(R) belongs
to NC.
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Strategy: Reduce the semigroup S generated by circuit input values

A few semigroup definitions: Let S be a semigroup.

> Let E(S) be the set of idempotents of S.

> Let Emax(S) C E(S) be obtained by picking from each maximal
(w.r.t. J-order) regular J-class of S an idempotent.

> He = Je N eSe is the maximal subgroup in S with identity e.

Lemma

Assume that the semiring R is {0, 1}-free and (R, ) is solvable.

Let C be a circuit, S = be the multiplicative semigroup generated by the
input values of C, F = Eax(S) and e € F.

Then the evaluation C can be reduced to the evaluation of (a constant
number of) circuits with input values from FSF \ H. (a subsemigroup!).
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What if (R, -) is solvable but not a monoid?

Reduction of the input values from S to FSF \ H, is done in three steps,
where n = |§|.
S — S" = SES = SFS — FSF — FSF \ He,

In the last step FSF \ He, we evaluate subcircuits in the ({0, 1}-free)
subsemiring eRe.

Note: eRe is a solvable monoid.
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Summary

Theorem

Let R be a finite semiring.

» If Ris {0, 1}-free and (R, ) is solvable, then CEP(R) is in NC
(actually in DET).

» otherwise it is P-complete.

Outlook

> Intersection problem of a given context-free grammar and a fixed
regular language

» Finite “semirings” where (R, ) is a groupoid?

» Evaluating semiring expressions?
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