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Circuits over algebraic structures
f1

f2 f3

f1 f3 f2

a1 a2 a3 a4

A = (A, f1, . . . , fm), fi : A
ri → A

Circuit C over A
I set of gates
I output gate
I X = a (a ∈ A) or X = fi (X1, . . . ,Xr )

constant gates inner gates

Circuit Evaluation Problem CEP(A)
Input: circuit C over A
Compute: value of output gate of C

Goal: Classify structures A according to the complexity of CEP(A)

If A is finite, then CEP(A) is clearly in P (= polynomial time).
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Parallel Complexity Theory

I P class of problems which can be solved in time nO(1).

I NC class of problems which have efficient parallel algorithms
I efficient parallel algorithm: time (log n)O(1) on a PRAM with

nO(1) processors
I Clearly NC ⊆ P
I The big open problem of parallel complexity theory: NC ( P?
I A problem A is P-complete if (i) it belongs to P and (ii) every

problem in P can be reduced to A.
I If NC ( P then P-complete do not belong to NC

(inherently sequential problems)

New goal: For which structures A is CEP(A) in NC (resp.,
P-complete)?

Are there structures A such that CEP(A) is neither in NC nor
P-complete?
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P-complete circuit evulation problems.

Theorem [Ladner, 1975]

Circuit evaluation problem for the boolean semiring B2 = ({0, 1},∨,∧)
is P-complete.

A semigroup S is solvable if every group in S is solvable.

Theorem [Beaudry et al., 1993, based on Krohn, Maurer, Rhodes, 1966]

Let S be a finite semigroup.
I If S is solvable, then CEP(S) is in NC
I otherwise it is P-complete.
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Circuits over Semirings
Question: For which semirings R is CEP(R) in NC?

Semiring R = (R ,+, ·)

I (R,+) commutative semigroup
I (R, ·) semigroup
I left- and right-distributivity

Example: Power semirings
finite semigroup S 7−→ P(S) = (2S \ {∅},∪, ·)

where A · B = {ab | a ∈ A, b ∈ B}

Why exclude ∅?
Let e ∈ S be an idempotent element, i.e. e · e = e.
Then

{
∅, {e}

} ∼= B2!

Question: For which semigroups S is CEP(P(S)) in NC?
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Circuits over Semirings

(Easy) P-complete examples

I B2 = ({0, 1},∨,∧)

I (Zd ,+, ·) for d ≥ 2

x ∧ y → x · y ¬x → 1+ (d − 1) · x

I finite semirings with additive identity 0
and multiplicative identity 1 6= 0

0 1 2 n n + 1

contains either B2 or Zd for some d ≥ 2

The semiring R = (R,+, ·) is {0, 1}-free if it contains no subsemiring
with an additive 0 and a multiplicative 1 6= 0.
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Main Theorem

Theorem
Let R be a finite semiring.

I If R is {0, 1}-free and (R, ·) is solvable, then CEP(R) is in NC
I otherwise it is P-complete.

Using results from semigroup theory:

Corollary

Let S be a finite semigroup.
I If S is a local group and solvable, then CEP(P(S)) is in NC
I otherwise it is P-complete.
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Power semiring over a finite group G

Example: G = (Z5,+)

∪

∪ ∪

+ +

{0, 1} {1, 2} {0, 2}

set cardinalities
nondecreasing
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Example: G = (Z5,+)

∪
{0, 1, 2, 3, 4}

∪
{1, 2, 3}

∪
{0, 1, 2, 3, 4}

+

{1, 2, 3}

+

{1, 2, 3, 4}

{0, 1} {1, 2} {0, 2}

set cardinalities
nondecreasing

Parallel Evaluation Algorithm

for k = 1, . . . , |G | do
evaluate all gates whose value has size k

endfor
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Invariant: After k-th round all sets of size ≤ k are evaluated.

1. Evaluate maximal ∪-subcircuits
=⇒ every ∪-gate has inner input gate

2. ∪-gate copies inner input gate
=⇒ evaluate multiplicative circuit

3. Find locally correct gates
4. X has correct value if all gates below X are locally correct

∪
{0, 1, 2, 3, 4}

∪
{1, 2, 3}

∪
{0, 1, 2, 3, 4}

+

{1, 2, 3}

+

{1, 2, 3, 4}

{0, 1} {1, 2} {0, 2}
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rank-functions
The algorithm terminates after |R| rounds if R has a function
rank : R → N with

I rank(a) ≤ rank(a+ b)

I rank(a), rank(b) ≤ rank(a · b)
I If rank(a) = rank(a+ b), then a = a+ b.

Example: Power semiring over finite group

I |A| ≤ |A ∪ B|
I |A|, |B| ≤ |A · B|
I If |A| = |A ∪ B|, then A = A ∪ B .

Lemma
If R has a rank-function and CEP(R, ·) is solvable, then CEP(R)
belongs to NC.
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If R has a rank-function and CEP(R, ·) is solvable, then CEP(R)
belongs to NC.
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rank-functions
Theorem
If R is {0, 1}-free and (R, ·) is a monoid, then R has a rank-function.

a � b ⇐⇒ b can be obtained from a by iterated
additions/multiplications with elements from R.

Induced function rank : R → N with

I rank(a) = rank(b) iff a � b � a

I rank(a) ≤ rank(b) if a � b

Corollary

If R is {0, 1}-free and (R, ·) is a solvable monoid, then CEP(R) belongs
to NC.
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What if (R , ·) is solvable but not a monoid?

Strategy: Reduce the semigroup S generated by circuit input values

A few semigroup definitions: Let S be a semigroup.

I Let E (S) be the set of idempotents of S .
I Let Emax(S) ⊆ E (S) be obtained by picking from each maximal

(w.r.t. J -order) regular J -class of S an idempotent.
I He = Je ∩ eSe is the maximal subgroup in S with identity e.

Lemma
Assume that the semiring R is {0, 1}-free and (R, ·) is solvable.

Let C be a circuit, S = be the multiplicative semigroup generated by the
input values of C, F = Emax(S) and e ∈ F .

Then the evaluation C can be reduced to the evaluation of (a constant
number of) circuits with input values from FSF \ He (a subsemigroup!).
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What if (R , ·) is solvable but not a monoid?

Reduction of the input values from S to FSF \ He is done in three steps,
where n = |S |.

S −→ Sn = SES = SFS −→ FSF −→ FSF \ He ,

In the last step FSF \ He , we evaluate subcircuits in the ({0, 1}-free)
subsemiring eRe.

Note: eRe is a solvable monoid.
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Summary

Theorem
Let R be a finite semiring.

I If R is {0, 1}-free and (R, ·) is solvable, then CEP(R) is in NC
(actually in DET).

I otherwise it is P-complete.

Outlook
I Intersection problem of a given context-free grammar and a fixed

regular language

I Finite “semirings” where (R, ·) is a groupoid?

I Evaluating semiring expressions?
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